
Cosmσlogy

c©2013, Robert Speare. All rights reserved.

1

Contents

I The Fourier Transform 6

1 Square Integrable Functions 6
1.1 P-Norms . 6
1.2 F(s) and f(x) . 6
1.3 Inner Products and the Hilbert Space . 7
1.4 Inner product of two Sinusoids . 8
1.5 Even and Odd Functions . 9
1.6 Dilation Differentiation Translation . 11
1.7 Convolution . 12
1.8 Correlation . 15

2 Examples 16
2.1 The Delta function . 16

2.1.1 Aside: Generalized Functions . 17
2.1.2 The Delta’s Transform . 17

2.2 Sine and Cosine . 18
2.3 The signum function . 19
2.4 The Heavy-Side Step function . 20

2.4.1 Aside: Convolution with the Heavyside . 21
2.5 The Top Hat function . 21
2.6 The exponentially damped function . 22
2.7 Gaussians . 22

II Statistics 24

3 In the x-space 24
3.1 Probability Density and Moments . 24
3.2 Cumulative Distribution Function . 25

3.2.1 Error function . 26
3.3 Moment Generating Function . 26

4 In the k-space 27
4.1 The Characteristic Function . 27
4.2 Addition of random Variables: Addition of Cumulants 29

4.2.1 Addition of Random Variables 2: A Note on ”Support” 30
4.2.2 Multiplication of two Random Variables . 31
4.2.3 Square of a Random Variable . 31
4.2.4 Square Root of a Random Variable . 32

4.3 Sample Spaces and Treating PDF’s as Waves . 32
4.4 The Multidimensional Central Limit Theorem . 32

5 Connection with Linear Stochastic ODE’s 37

6 The Gram Charlier Expansion 39

2

7 A few standard Distributions 39
7.1 The Binomial Disribution . 39

7.1.1 Binomial Distribution in the Limit . 40
7.2 Stirling’s Approximation and the Poisson Distribution . 40

7.2.1 Properties of the Poisson . 42
7.2.2 The Exponentially Damped PDF . 42

7.3 Gamma Densities . 44
7.4 The Chi-Squared Distribution . 45

8 In the Sample space 47
8.0.1 N Flips of a coin . 47
8.0.2 Conditional Probability . 48
8.0.3 Set Definitions and Identities . 49
8.0.4 Partitioning the Sample Space . 50

9 Parameter Estimation 52
9.1 Bayes Theorem, once again... 52
9.2 Chi-Squared Statistic and the Likelihood function . 53

9.2.1 Estimating the Mean . 55
9.3 Least-χ2 with matrices . 56
9.4 Correlation between two random variables . 56
9.5 Orthogonality and Mutual Independence . 56
9.6 Estimator of Covariance . 57

III Machine Learning and Handy Tricks 59

10 Cumulants of the Sample Mean 59

11 Chernoff Bound 60

12 Logistic Regression and Naive Bayes Classifier 64

13 Learning Theory 67

14 Bias Variance Tradeoff 71

15 DAG’s 71

16 A simple note on Bias-Variance Decomposition 73

17 Importance Sampling 73

18 k means and the EM algorithm 73

19 Facility Location as Adaptive K-Means 76

20 Stratified Sampling 78

21 Fisher’s Exact Test 79

22 Restricted multinoulli samples 82

3

23 Label Propagation and Semi-Supervised Learning: Gaussian Random Field Method 86
23.1 Markov Random Walks . 88

24 Entity Resolution 88

25 Estimating the Survival Function 90

26 LARS: Least Angle Regression 93

27 Colinearity 93
27.1 Part 1 . 93
27.2 Part 2 . 95
27.3 Part 3 . 97
27.4 Pricing Optimization . 98

28 Regression and Matching 98

IV Useful Mathematical Functions 98

29 The Gamma Function Recursion Relation 98
29.1 For Integers . 98
29.2 For Half-Integers . 99

29.2.1 Relation of the Gamma Function to the moments of a Normal Distribution 100
29.3 The Beta Function . 100
29.4 The N-dimensional Ball . 100
29.5 Dimensional Regularization . 102

V Stochastic Processes 102

30 Time Series Data 102
30.1 Linear Wold Representation and Green’s Functions . 102

31 The Watson-Nadaraya Estimator 104

32 Differential Regularizers 104

VI Cosmology 107

33 Assumptions 107
33.1 Absurd Multinomial . 107
33.2 Ergodicity . 108

34 The Two Point Correlation Function 108

35 Power Spectrum Estimators 110

36 Interpolation of the Bispectrum and decomposition into Multipoles 112

4

37 Eulerian Fluid Dynamics 112
37.1 Equations of Motion . 112
37.2 Comoving Equations of Motion . 112

37.2.1 Worked examples . 113
37.2.2 Hubble as Decaying Mode . 113
37.2.3 Jean’s Length . 114

38 Lagrangian Fluid Dynamics 114
38.1 Grintein and Wise . 115

39 Relation to The Gaussian Ensemble 115

VII Mathematical Cookbook 115

40 Sturm Liouville Problems 115
40.1 Variational to Dif EQ . 116
40.2 Dif EQ to Variational Method . 117
40.3 Sturm-Liouville Appropriate Boundary Conditions . 117

40.3.1 Examples . 118

41 Green’s Functions and Propagators 118

5

Part I

The Fourier Transform
1 Square Integrable Functions
Square integrable functions are an extremely important part of quantum mechanics and many branches of
Physics. They allow the easy construction of function “inner products” – or a Hilbert space – and the Born
probability amplitude |ψ|2.

1.1 P-Norms
For the purposes of this section, we will restrict our discussion only to square integrable functions in one
dimensional euclidean space, or L2(E1). These functions have the propertry

(

∫ ∞
−∞
|f(x)|2dx)1/2 <∞, (1)

Which means the “two norm” of f converges. A general p norm is defined as

‖f‖p ≡ (

∫ ∞
−∞
|f(x)|pdx)1/p (2)

We define |f |∞ to be the supremum of the function f , or the highest value it attains over its domain.
You will see shortly that this notion of a p norm is tightly connected with the abstract idea of an “inner
product” between two functions.

1.2 F(s) and f(x)
The Fourier Transform is a bounded linear transform which maps f → F . We define the transform as

F (s) =

∫
f(x)e2πixsdx (3)

The resulting function F , can be synonymously referred to as f̂ or f̄ . We will make the definition clear by
context. Here are a few compact ways to write the transformation above:

f ⊃ F (4)
f̄ = F (5)
f̂ = F (6)

Note that, there is a concept of a “forward” and a “backward” transform, in the sense that one takes
you “into” frequency space, and one takes you “out” of frequency space:

f(x) = F (s) =

∫
f(x)e−2πixsdx (7)

F (s) = f(x) =

∫
F (s)e2πisxds (8)

This first is a “forward” transform – which we associate with a negative argument in the exponential;
the second is a “backward” transform – which we associate with a positive argument in the exponential.
Notice that, if we forward transform twice:

6

f(x) ⊃ F (k) ⊃ f(−x), (9)

but

f(x) ⊃ F (k) “forwards” (10)
f(x) ⊂ F (k) “backwards”. (11)

The Fourier transform therefore, has a well defined inverse and we say that f and F form a transform
pair. In L2(E1) theory, we can say without doubt that the backwards Fourier transform is finite, or that the
integral:

f(x) =

∫
F (k)eikxdx (12)

converges. This is not necessarily true in L1(E1) theory.
Many physically-oriented people like to think of f(x) as a superposition of complex waves eikx, with

the component function F (k). Some people even like to think of f(x) as a vector – even though its not –
built out of orthogonal wave components eikx. Such notions of Fourier analysis can be helpful in quantum
mechanics.

1.3 Inner Products and the Hilbert Space
We can treat square integrable functions, say f(x) and g(x) as vectors in an inner product space. This is
because the inner product

〈f, g〉 =

∫
f(x)g(x)dx (13)

is well defined – i.e. never reaches infinity or meaningless values. This is because both f and g were
square integrable, ‖f‖2 < ∞, ‖g‖2 < ∞. Let us prove this with the a triangle identity of sorts. First we
examine the inner product of f with itself, or, its 2 norm.

〈f, f〉 =

∫
f(x)2dx (14)

〈f, f〉 =

∫
|f(x)|2dx (15)

√
〈f, f〉 =

√∫
|f(x)|2dx (16)√

〈f, f〉 = ‖f‖2 (17)

Next, we look at the square of the inner product between f and g

7

〈f, g〉 =

∫
f(x)g(x)dx (18)

|〈f, g〉|2 = (

∫
f(x)g(x)dx)2 (19)

|〈f, g〉|2 ≤
∫
|f(x)g(x)|2dx (20)

|〈f, g〉|2 ≤
∫
|f(x)|2|g(x)|2dx (21)

|〈f, g〉|2 ≤
∫
|f(x)|2dx

∫
|g(x)|2dx (22)

|〈f, g〉|2 ≤ ‖f‖2‖g‖2 (23)

Where, we have excised the subscript 2 for the “two” norm to avoid confusion with the squared power.
Notice that this inner product is bounded between f and g. We have a well defined scalar, created from this
inner product of two functions! This relation is called the Cauchy-Schwartz inequality, and is intimately
related with the dot product in cartesian space between two vectors:

~a ·~b = |a||b| cos θ (24)

|~a ·~b|2 = |a|2|b|2(cos θ)2 (25)

|~a ·~b|2 = (~a · ~a)(~b ·~b)(cos θ)2 (26)

~a ·~b ≤ |a||b| (27)

This space of square-integrable L2(E1) functions is a Hilbert Space: a real or complex inner product
space that is also a complete metric space. The latter part of that sentence we won’t get into at the moment;
the main takeaway is to understand that two functions can now be deemed orthogonal if their inner product
is zero. Take sinx and cosx for example, or any even function f and odd function g: if these two functions
are both square integrable, we find that their inner product is zero! (Note however, that for sin and cos, we
require our integration bounds to be finite; say −π/2→ π/2.)

1.4 Inner product of two Sinusoids
It is easily shown that the inner product of two sinusoidal functions is zero unless they carry the same
frequency argument. The fundamental assumption in Fourier analysis is that we can build any function
out of sinusoids – which are a complete, orthogonal set of basis ”vectors”. We often write the expansion
of a function f in terms of sinusoids of period L:

f(x) = a0 +
∑

an cos(
2πnx

L
) + bn sin(

2πnx

L
) (28)

Using trigonometric identities, it is easily shown that

∫ L

0

cos(
2πmx

L
) sin(

2πnx

L
)dx = 0 ∀m,n∫ L

0

cos(
2πmx

L
) cos(

2πnx

L
)dx = 0 m 6= n∫ L

0

sin(
2πmx

L
) sin(

2πnx

L
)dx = 0 m 6= n

8

For the case m = n, we find

∫ L

0

cos(
2πnx

L
) cos(

2πnx

L
)dx =

L

2∫ L

0

sin(
2πnx

L
) sin(

2πnx

L
)dx =

L

2

If we would like to correctly write any function f in terms of sinusoids, we need to calculate the an
and bn terms. This is easily accomplished by something called “Fourier’s” trick:

f(x) = a0 +
∑

an cos(
2πnx

L
) + bn sin(

2πnx

L
)∫

f(x) sin(
2πmx

L
) =

∫
a0 sin(

2πmx

L
)dx+∫ ∑

an cos(
2πnx

L
) sin(

2πmx

L
)dx+∫ ∑

bn sin(
2πmx

L
) sin(

2πnx

L
)dx

The integral of a sum is equal to the sum of the integrals, and we know that all the mixed cos and sin
terms will go to zero. Leaving us with:

∫
f(x) sin(

2πnx

L
) =

∫ ∑
bn sin(

2πnx

L
) sin(

2πmx

L
)dx.

Which will be zero unless we set m = n. Meaning

∫ L

0

f(x) sin(
2πnx

L
) = bn

L

2

2

L

∫ L

0

f(x) sin(
2πnx

L
) = bn

Conversely, we find the same for cos and the an terms:

∫ L

0

f(x) cos(
2πnx

L
) = an

L

2

2

L

∫ L

0

f(x) cos(
2πnx

L
) = an

1.5 Even and Odd Functions
Normally in Physics, we are interested in the Fourier transform of a real function. F (k) is obviously
complex-valued, and we note the above definition has some implications on the evenness, oddness, and
realness of our transform. Let us first examine the complex conjugate of our transform F

9

F (s) =

∫
f(x)e2πisxdx (29)

F ?(s) =

∫
f(x)e−2πisxdx (30)

F ?(−s) =

∫
f(x)e2πisxdx (31)

F ?(−s) = F (s) (32)

Functions with this property are called Hermitian. Or notice that, whenever we took the complex
conjugate of F , we did not change the sign of f(x) – in fact we didn’t change anything about the function,
because we assumed it was purely real (i.e. f ?(x) = f(x). If f is real, then F is complex Hermitian. Now
let us split up the complex exponential into its real and imaginary parts:

F (s) =

∫
f(x)e2πisxdx (33)

F (s) =

∫
f(x) cos(2πsx)dx− i

∫
f(x) sin(2πsx)dx (34)

First, note that any function f can be uniquely described by the superposition of an even and and odd
function – f(x) = E(x) + O(x). To prove this, let us split up our f(x) into two separate even and odd
pairs:

f(x) = E1(x) +O1(x)

f(x) = E2(x) +O2(x)

E1(x) +O1(x) = E2(x) +O2(x)

E1(x)− E2(x) = O1(x)−O2(x)

Our final result compares an completely even function (left hand side of the equation) to a completely
odd function (right hand side). This is impossible. And so we find the only solution to this equation is the
not-so-trivial case E1 = E2, O1 = O2. We can now claim that

F (s) =

∫
f(x)e2πisxdx (35)

F (s) =

∫
E(x) cos(2πsx)dx− i

∫
O(x) sin(2πsx)dx (36)

Notoce that if f(x) is a completely even function f(x) = E(x), the second integral is zero and the
transform is completely real. Obversely, if f(x) is a completely odd function, then we find that our
transform is completely imaginary. Furthermore, F (s) inherits the even and odd properties of f(x). Let’s
show this by flipping the sign of x for the even and odd case. In the even case, our second integral is zero
and we find:

f(−x) =

∫
E(−x) cos(2πs(−x))dx− i

∫
O(−x) sin(2πs(−x))dx (37)

=

∫
E(x) cos(2π(−s)x)dx− 0 (38)

=

∫
f(x) cos(2πs′x)dx (39)

= F (s′) (40)
⇒ F (s) = F (−s) (41)

10

In the odd case, our first integral is zero and we find:

f(−x) =

∫
E(−x) cos(2πs(−x))dx− i

∫
O(−x) sin(2πs(−x))dx (42)

= −
∫
O(x) sin(2π(−s)x)dx (43)

= −
∫
O(−x) sin(2πs′x)dx (44)

=

∫
O(x) sin(2πs′x)dx (45)

⇒ F (s) = −F (−s) (46)

If f is even, its transform F is even; if f is odd, its transform F is odd. Summarizing:

1. If f(x) is even and real, then F (k) is even and real.

2. If f(x) is odd and real, then F (k) is odd and imaginary.

3. If f(x) is even and imaginary, then F (k) is even and imaginary.

4. If f(x) is odd and imaginary, then F (k) is odd and real.

Note that points (1) and (2) for real valued function f , imply F ∗(−k) = F (k), or that the complex
conjugate of the transform is equal to the reflected transform. Such function F (k) – or matrices for that
matter – are called Hermitian.

1.6 Dilation Differentiation Translation
There are quite a few nice properties to F (k), let us tabulate them briefly:

1. Dilation

f(ax) =

∫
f(ax)e−2πisxdx (47)

=
1

|a|

∫
f(x)e−2πi s

a
xdx (48)

=
1

|a|
F (

s

a
) (49)

2. Translation

f(x− a) =

∫
f(x− a)e−2πisxdx (50)

=

∫
f(x′)e−2πis(x′+a)dx′ (51)

= F (s)e−2πisa (52)

11

3. Differentiation
∂F (s)

∂s
=

∂

∂s

∫
f(x)e−2πisxdx (53)

=

∫
−2πixf(x)e−2πisxdx (54)

∂F (s)

∂s
= −2πixf(x) (55)

in

(2π)n
∂F (k)

∂k
= xnf(x) (56)

1.7 Convolution
We can say that the L2 space, apart from being an inner product space, is also equipped with a multipli-
cation operation. We can “combine” two square-functions through convolution, an operation labeled by
f ∗ g for arbitrary functions of f and g and defined as∫

f(x)g(y − x)dx = (f ∗ g)(y) (57)

Notice that the final result is only a function of y. x has been “integrated away”. This operation can be
understood in the following way: take g(x) and flip it about the y axis – i.e. turn it around; now displace
that flipped function g from the origin by varying lengths y. Run it along the x-axis and measure the area
overlap between g and the non-displaced function f by integrating over the multiplicative heights at each
x+ δx.

Some people even think of convolution as “melting” one function’s height into the form of another and
adding up this “melting” operation for every possible displacement y. For example, a very noisy function
– let’s call f white noise – convolved with a Gaussian g will yield a much smoother result f ∗ g. One
could claim that the sharp peaks of the white noise function f were melted and smoothed into the form of
a Gaussian g at each and every x value. For example, smoothing or “blurring” of images normally takes
the form of convolution with a Gaussian:

Convolution of two functions is an incredibly important concept – and easily digestible in Fourier
space because of the convolution theorem (1). Convolution describes: the probability density function of
the observable Z = X + Y the sum two mutually independent random variables X and Y ; the smearing
effects of data associated with lab equipment; atomic scattering factors; diffraction from a lattice (or a
crystal); and how to fill in missing data for known probability distributions in k-space.

Theorem 1. Let f(x) and g(x) be square integrable functions; the Fourier transform of the convolution
is product of the transforms. Namely, (f ∗ g) = FG and vice versa, F ∗G = fg.

Proof. Let us examine the convolution of f and g:∫
f(x)g(y − x)dx = (f ∗ g)(y), (58)

and then transform that convolution into Fourier space,∫ ∫
f(x)g(y − x)e−2πisydxdy = (f ∗ g)(y) (59)∫ ∫
f(x)g(y − x)e−2πisydydx = (f ∗ g)(y) (60)∫

f(x)G(s)e−2πisxdx = (f ∗ g)(y) (61)

F (s)G(s) = (f ∗ g)(y). (62)

12

Figure 1: A very pretty picture convolved with a two dimensional Gaussian function, whose smoothing
length or variance is equal to various pixel values. In its function form, this smoothing function probably
looks like G(x) ∼ e(x2+y2)/(2N), where N is the number of pixels, or the variance of the Gaussian, and
x2 + y2 = r2.

13

Figure 2: A smoothed 3-dimensional N-Body simulation. Note that before smoothing, this data would
have looked very much like a dust plot, or a bunch of little stars – or sand particles – floating in space.
Smoothing has smeared those tiny particles into a much larger, interesting structure.

14

Where, we have used the translation property above (Equation 47). Examining the obverse,

∫
F (s)G(s′ − s)dk = (F ∗G)(s′), (63)

and transforming back to x-space,∫ ∫
F (s)G(s′ − s)e2πis′xdsds′ = (F ∗G)(s′) (64)∫ ∫
F (s)G(s′ − s)e2πis′xds′ds = (F ∗G)(s′) (65)∫

F (s)g(s)e2πisxds = (F ∗G)(s′) (66)

f(x)g(x) = (F ∗G)(s′) (67)

And this concludes the proof.

1.8 Correlation
Another multiplication operation between square-integrable function is the correlation, represented by
f ? g and defined as:

(f ? g)(y) =

∫
f(x)g(x− y)dx (68)

Notice how the final result is a function of y. x has once again been “integrated away”. This correlation
operation is basically taking two functions and displacing them by varying lengths, measuring the total
area overlap. (Less complicated than convolution). We are essentially measuring the likeness between two
distributions. Let f and g be real-valued functions, such that their transforms are complex Hermitian –
F ∗(−k) = F (k). Let us examine this correlation operation in k-space

(f ? g)(y) =

∫ ∫
f(x)g(x− y)e−2πisydxdy (69)

=

∫ ∫
f(x)g(x− y)e−2πisydydx (70)

=

∫
f(x)G(−s)e−2πisxdx (71)

= F (s)G(−s) (72)
= F (s)G∗(s) (73)

Where, in the last step we use the complex Hermitian quality of G(s). So, the transform of the
correlation between two functions is the multiplication of the transforms, just like convolution – except
one of those functions must be a complex conjugate. This has very interesting consequences for auto-
correlation, or, a function’s correlation with itself . . .

15

(f ? f)(y) =

∫ ∫
f(x)f(x− y)e−ikydxdy (74)

=

∫ ∫
f(x)f(x− y)e−ikydydx (75)

=

∫
f(x)F (−k)e−ikxdx (76)

= F (k)F (−k) (77)
= |F (k)|2 (78)

Strange, we have arrived at the square modulus of the transformed function! This leads us to Parseval’s
theorem, which states that the integral of the squared transform is equal to the integral of the squared
function – an equal energy theorem. Let’s take a look at the expectation value of auto correlation when
y = 0:

〈(f ? f)(y)〉 = 〈|F (k)|2〉 (79)
〈(f ? f)(0)〉 = 〈|F (k)|2〉 (80)
〈|f(x)|2〉 = 〈|F (k)|2〉 (81)

(82)

Pretty cool, right? This is also referred to as Rayleigh’s theorem – that the area under the squared
Power spectrum is equal to the area under the squared two point correlation function. 1

2 Examples
2.1 The Delta function
For the following section, we will adopt a new definition of the Fourier transform, which is more intuitive
to Quantum Mechanics but carries along with a pesky normalization factor; a factor which, we will ignore
for most of our discussion. The Fourier transform pairs are defined as:

f(x) = F (k) =
1

2π

∫
f(x)e−ikxdx (83)

F (k) = f(x) =

∫
F (k)eikxdk (84)

The delta function δ(x) is defined to be zero everywhere except at the origin, or where x = 0 – this gets
more complicated of course in higher dimensions like E3. In fact, what’s frustrating about the dirac delta
function is that its not even a well defined function. It has no clear value without an integral sign and a test
function. Let me explain: ∫ ∞

−∞
δ(x)dx = 1 (85)

The integral of the delta function is one.∫ ∞
−∞

f(x)δ(x)dx = f(0) (86)

The integral of the delta function with some included test function f spits out that test function’s value
at the origin. It is more proper to call δ(x) a distribution in Schwartz space, or, a generalized function.

1In fact the correlation function f ? f and F ? F are incredibly important in cosmology and w/r/t Gaussian Random fields.

16

2.1.1 Aside: Generalized Functions

What is a generalized function? It is simply a function that is well-behaved under the operations of
differentiation, integration, and translation. In fact, a generalized function does not have to have a single
representation such as f(x) = x; it can be constructed as the limit of a sequence of another function! For
example, the dirac delta function can be constructed out of an infinite sequence of Gaussians:

δ(x) = lim
a→0

1

a
√
π
e−x

2/a2

(87)

This sequence is very well-behaved, since a Gaussian is infinitely differentiable – or, is an element of
the class of infinitely differentiable functions, C∞. This is the most powerful formulation of the dirac delta
function – another option is to use thinner and thinner top-hat or sinc functions .

2.1.2 The Delta’s Transform

Let’s treat our test function f as the complex exponential e−ikx, this means

∫ ∞
−∞

f(x)δ(x)dx = f(0) (88)∫ ∞
−∞

e−ikxδ(x)dx = 1 (89)

(90)

Strange, it seems the Fourier transform of the dirac delta function is unity! This implies a mutual
transform: 1 ⊃ δ. We have now formed a transform pair.

Let us take a look at the delta function, offset by some value a:

∫ ∞
−∞

f(x)δ(x− a)dx = f(a) (91)∫ ∞
−∞

e−ikxδ(x)dx = e−ika (92)

(93)

Ok, so we have now found that δ(x− a) = e−ika. Let’s take a look from the other side:

∫ ∞
−∞

F (k)δ(k − k′)dk = F (k′) (94)∫ ∞
−∞

eikxδ(k − k′)dk = eik
′x (95)

which means δ(k − k′) = eik
′x. We can easily extrapolate this to the Fourier transform, without the

delta function underneath the integral:

∫ ∞
−∞

e−ikxeik
′xdx = eik′x (96)∫ ∞

−∞
e−i(k−k

′)xdx = eik′x (97)

δ(k − k′) = eik′x (98)

17

Where, we have used the fact that complex exponential construct a well defined orthogonal basis in
L2 space – i.e. the integral is zero unless k = k′. We can do the same analysis for dk integration, and
summarizing our results below:

δ(x) ⊃ 1 (99)
1 ⊃ δ(k) (100)

eik
′x ⊃ δ(k − k′) (101)

δ(x− x′) ⊃ e−ikx
′

(102)

Notice that I have not included the normalization factor for the Fourier transform that involves x
integration. If I do this, we have to essentially multiply all of our δ function by 2π yielding,

2πδ(x) ⊃ 1 (103)
1 ⊃ 2πδ(k) (104)

eik
′x ⊃ 2πδ(k − k′) (105)

2πδ(x− x′) ⊃ e−ikx
′

(106)

Interesting, we have now defined Fourier transform pairs for the delta function, which wasn’t actually
a well-defined function to begin with! To be more rigorous about this point: we have actually taken the
fourier transform of a limiting sequence of functions, by taking the following steps:

1. Define a sequence of functions fN(x) such that limN→∞ fN = f(x). Make sure that f is square-
integrable and well-behaved under differentiation and translation.

2. Compute the Fourier transform of the sequence fN(x) = FN(k).

3. Define the F (k) as the limit of the transformed sequence, such that F (k) = limN→∞ FN(k).

So essentially, to find the Fourier transform of the dirac delta function, we could actually examine the
limiting series of Fourier-transformed Gaussians – which are also Gaussians.

2.2 Sine and Cosine
Since we can build sin and cos out of complex exponential functions, let us demonstrate the power of
“building transforms out of other transforms”:

sin(k′x) =
eik
′x − e−ik′x

2i
(107)

sin(k′x) =
δ(k − k′)− δ(k + k′)

2i
(108)

(109)

And now for the cosine function:

cos(k′x) =
eik
′x + e−ik′x

2i
(110)

cos(k′x) =
δ(k − k′) + δ(k + k′)

2
(111)

(112)

18

Note that, these two transforms are “discrete” in the sense that there are specific values for k in which
they are defined. A general remark can be made here, in the sense that the Fourier transform of periodic
functions will always be discrete, since the complex exponential essentially picks out all of the “parallel”
oscillating components of the function f .

2.3 The signum function
The signum function, sgn(x), is defined as −1 for x < 0 and 1 for x ≥ 0. It is essentially a step function.
Let us examine it’s fourier transform:

sgn(x) =

∫ ∞
−∞

sgn(x)e−ikxdx (113)

Since the signum function is odd, we know by symmetry that the even portions of the complex expo-
nential e−ikx = cos(kx)− i sin(kx) will add to zero, therefore we can re-write this integral using only the
sine term:

sgn(x) = −i
∫ ∞
−∞

sgn(x) sin(kx)
dx

2π
(114)

= −2i

∫ ∞
0

sgn(x) sin(kx)
dx

2π
(115)

= −2i

∫ ∞
0

sin(kx)
dx

2π
(116)

= − i
π
− cos(kx)

k
|∞0 (117)

=
i

π

cos(kx)

k
|∞0 (118)

Cosine will not go to a well-defined value at the upper limit, and so we are left without a Fourier
transform under its strict definition. But, if we construct the signum function as a generalized function, or,
the limit of a sequence of functions, we can follow our steps from before:

1. Let’s re-define the signum function:

fN(x) =

{
e−x/N , if x < 0

−ex/N , x ≥ 0
(119)

The limit of this sequence of functions clearly goes to sgn(x).

2. Fourier transforming these two functions:

19

fN(x) =

∫ ∞
0

e−x/Ne−ikx
dx

2π
+

∫ 0

−∞
−ex/Ne−ikxdx

2π
(120)

=

∫ ∞
0

e−(1
N

+ik)xdx

2π
+

∫ 0

−∞
−e(1

N
−ik)xdx

2π
(121)

=
e−(1

N
+ik)x

−(1
N

+ ik)x
|∞0 +

−e(1
N
−ik)x

(1
N
− ik)x

|∞0 (122)

=
1

2π

1
1
N

+ ik
+

1

2π

−1
1
N
− ik

(123)

=
1

2π

1
1
N

+ ik
+

1

2π

−1
1
N
− ik

(124)

=
1

2π
(

1
1
N

+ ik
− 1

1
N
− ik

) (125)

3. And now taking the limit of the sequence of those transformed functions we find a much simpler
expression

lim
N→∞

fN(x) =
1

2π

2

ik
(126)

sgn(x) =
−i
πk

(127)

It is amazing what you can accomplish with sequences of functions. Seemingly difficult f(x) func-
tions, at least in the sense of the Fourier transform, can be molded into much more tractable expressions.

2.4 The Heavy-Side Step function
The heavy-side step function is simply

H(x) =

{
0, if x < 0

1, x ≥ 0
(128)

Or, we can write the Heavy-side step function in terms of the signum function:

H(x) = sgn(x) + 1 (129)

This implies the the Fourier transform of the Heavy-side step function is the addition of the two trans-
forms. But because the Heavy-side function is only non-zero for x ≥ 0, while the signum function was
defined for all x, we need to divide the transform by 2

H(x) = sgn(x) + 1 (130)

=
1

2
[δ(k)− i

πk
] (131)

Interesting . . .

20

2.4.1 Aside: Convolution with the Heavyside

Notice that convolution with the Heavyside step function yields the integral of a function. For example

H ∗ f =

∫ ∞
−∞

H(x)f(y − x)dx (132)

f ∗H = = H ∗ f (133)

f ∗H =

∫ ∞
−∞

H(y − x)f(x)dx (134)

f ∗H =

∫ y

−∞
f(x)dx (135)

The flipped Heavyside function kills all output when its argument, x′ − x is negative. Therefore we
can see that convolution with the Heavyside is equivalent to integration.

2.5 The Top Hat function
The Fourier transform of the top hat function, Π(x) defined as

Π(x) =


1/2, |x| = 1/2

1, |x| < 1/2

0, otherwise
(136)

If we transform this function, we find that all x values are killed off outside of |x| < 1/2, so we have

Π(x) =
1

2π

∫ 1/2

−1/2

e−ikxdx (137)

=
1

2π

e−ikx

−ik
|1/2−1/2 (138)

=
1

2π

e−i
k
2 − eik 1

2

−ik
(139)

=
1

2π

−2i sin(k/2)

−ik
(140)

=
1

2π

sin(k/2)

k/2
(141)

(142)

Without a normalization scheme, or, under the transform

F (s) =

∫
f(x)e−2πisxdx, (143)

We find

Π(x) ⊃ sin(s)

s
. (144)

21

2.6 The exponentially damped function
The Fourier transform of the exponentially damped function

f(x) = e−a|x| (145)

Is easy to do for L2(E1). Let us integrate this transform in closed form

f(x) = F (s) (146)

f(x) =

∫ ∞
−∞

y(x)e−2πisxdx (147)

=

∫ ∞
−∞

Ae−a|x|e−2πisxdx (148)

Let us look at the positive side of the integral, where x > 0:∫ ∞
0

Ae−axe−2πisxdx =

∫ ∞
0

Ae−x(a+2πis)dx (149)

= −Ae
−x(a+2πis)

a+ 2πis
|∞0 (150)

=
A

a+ 2πis
(151)

Now for the negative side:

∫ 0

−∞
Ae−axe−2πisxdx =

∫ 0

−∞
Aex(a−2πis)dx (152)

=
Ae−x(a−2πis)

a− 2πis
|0−∞ (153)

=
A

a− 2πis
(154)

Adding these two complex numbers together, we get a real number (since they are complex conjugates
of of one another):

F (s) =
2Aa

a2 + 4π2s2
(155)

And that’s our transform. This is often called the Poisson kernel, and is used inL1(En) Fourier analysis
much like a δ or ε ball, to “squeeze” a misbehaved function f through the Fourier transform.

2.7 Gaussians
Let us adopt the definition of the Fourier transform without normalization constants, i.e.:

f(x) =

∫
F (s)e2πisxds (156)

F (s) =

∫
f(x)e−2πisxdx (157)

If our f(x) = e−πx
2 , we can examine it’s derivatives in both x and k space:

22

∂f(x)

∂x
= −2πxf(x) (158)

F(
∂f(x)

∂x
) = 2πisF (s) (159)

F(−2πxf(x)) =
1

i

∂F (s)

∂s
(160)

F(−2πxf(x)) = F(
∂f(x)

∂x
) (161)

1

i

∂F (s)

∂s
= F(

∂f(x)

∂x
) (162)

1

i

∂F (s)

∂s
= 2πisF (s) (163)

∂F (s)

∂s
= −2πsF (s) (164)

dF

F
= −2πsds (165)

log(F) = −πs2 + C (166)

F (s) = C0e
−πs2 (167)

F (s) ∼ e−πs
2

(168)

So, we have recovered a Gaussian in k-space! C0 is most often unity, but this depends upon the
normalization of f(x). Note that f(x) has a variance or width of

√
π

2
, and F (s) has a variance or width

of 1√
2π

. As one Gaussian gets thinner the other gets fatter! (And, vice versa).This is intimately related to
the uncertainty principle in Quantum mechanics – which, messes around with quite a few Gaussian wave
packets to describe particles – the use of Large arrays of antennae to image extremely small points on the
sky, and the various interference patterns created by diffraction gratings of small and big slits. We could
go on and on about this curious property of squeezing in x-space turning into stretching in k-space; the
point is, we now have our Fourier transform pair,

e−πx
2 ⊃ e−πs

2

(169)

subject to a normalization scheme.

23

Part II

Statistics
3 In the x-space
3.1 Probability Density and Moments
Let us first define a probability density function, P (x): the likelihood that a particle – or a state – will be
found between the observable x and x+ δx. This probability density function must be normalized, in the
sense that, if we sum up all of the probabilities for all possible outcomes, we get unity:∫

P (x)dx = 1. (170)

Let us start with an easy example. Take a Gaussian probability density function, with an arbitrary normal-
ization constant placed next to it:

P (x) = C0e
− x2

2σ2 , (171)

where σ is the variance of the distribution, or the “width” (more on this later). Let us integrate this function
by squaring and placing in polar coordinates

(

∫
P (x)dx)2 =

∫
P (x)dx

∫
P (y)dy

= C2
0

∫ ∫
e−

x2

2σ2 e−
y2

2σ2 dxdy

= C2
0

∫ ∫
e−

x2+y2

2σ2 dxdy

= C2
0

∫ 2π

0

∫ ∞
0

e−
r2

2σ2 rdrdθ

= 2πC2
0

∫ ∞
0

e−
r2

2σ2 rdr

= 2πC2
0

∫ ∞
0

eu − σ2du

= 2πσ2C2
0(−eu|∞0)

= 2πσ2C2
0(1) (172)

If the integral of each probability density function P (x) is 1, this requires

C0 =
1√

2πσ2
(173)

This is the standard normalization of a Gaussian.
Now that we have normalized our probability density function, we can derive meaningful statistics

from these functions. The first is called the average, which is simply the weighted sum of the observable
x over the domain of the probability density function:

〈x〉 =

∫
xP (x)dx (174)

24

This is called the “first moment”. We can relate this to the second, third and higher moments in the
following way

〈
x2
〉

=

∫
x2P (x)dx (175)〈

x3
〉

=

∫
x3P (x)dx (176)

〈xn〉 =

∫
xnP (x)dx (177)

Let us refer to these moments synonymously as the expectation value of x to the “nth” power, or the
“nth” moment: mn. Recall that the variance, or the sum of the squares of deviation from the mean is
defined as

σ2 =
〈
(x− 〈x〉)2

〉
(178)

=
〈
(x−m1)2

〉
(179)

=
〈
(x2 − 2m1x+m2

1)
〉

(180)

=

∫
P (x)(x2 − 2m1x+m2

1)dx (181)

=

∫
P (x)x2dx− 2m1

∫
xP (x)dx+m2

1

∫
P (x)dx (182)

= m2 − 2m1m1 +m2
1(1) (183)

= m2 −m2
1 (184)

(185)

Where, we have pulled all the m1 first moment terms out of the integral expressions and simplified the
final expression. This variance, or “width” of the distribution is actually called the second cumulant, c2,
but more on that later.

3.2 Cumulative Distribution Function
The cumulative distribution function is normally labeled by the greek letter Φ, and is the probability of
observing “any outcome up to x”. It’s essentially an integral:

Φ(x) =

∫ x

−∞
P (x′)dx′ (186)

For a normal distribution – or a Gaussian – we have:

Φ(x) =
1√

2πσ2

∫ x

−∞
e
−(x′)2

2σ2 dx′ (187)

If we take the derivative with respect to x we get back our Probability density:

dΦ(x)

dx
|x=x′ = P (x′) (188)

This representation allows us to write our moments in a more compact way:

〈xn〉 =

∫
xndΦ (189)

25

Where, dΦ is now what’s called a Lebesque measure.2

3.2.1 Error function

Building upon this notion of a cumulative distribution function for a Gaussian, we can now introduce the
error function, which is often an abstruse concept. One can think of it as an altered cumulative distribution
function for the normal

erf(x) =
2√
π

∫ x

0

e−t
2

dt, (190)

where we have essentially set the variance σ2 = 1
2

and integrated away from x = 0. If we understand
that

Φ(0) =

∫ 0

−∞
P (x′)dx′ = 1/2 (191)

for the normal distribution, we can write

erf(x) = 2(Φ(x)− 1

2
) (192)

The error function, if we re-scale it and evaluate at x
σ
√

2
, gives us the probability of observing an

outcome a distance x from the mean value of a normal distribution; which, we have assumed to be centered
at x = 0 for this entire discussion.

3.3 Moment Generating Function
Let us define now, the moment generating function:

M(k) =

∫
ekxP (x)dx (193)

Expands the above expression, we see that the exponential term carries all powers of x, and therefore
we can isolate those powers by taking derivative with respect to k:

M(k) =

∫
ekxP (x)dx (194)

M(k) =

∫
(1 + kx+

(kx)2

2!
+

(kx)3

3!
+

(kx)4

4!
+ . . .)P (x)dx (195)

∂nM

∂kn
|k=0 =

∫
xnP (x)dx (196)

∂nM

∂kn
|k=0 = mn (197)

Thus, we call M(k) the moment generating function, because it’s k derivatives about k = 0 give us all
the moments of our probability distribution.

Another way to derive this result is to frame the moment generating function in terms of the laplace
transform of the Probability density function:

M ′(k) =

∫
e−kxP (x)dx (198)

2We can assume this measure is finite, since the cumulative distribution function by its definition must go to 1 or 0 as x goes
to∞ or −∞ respectively.

26

Which, leaves us with the above definition of the n moments, except with an added sign convention

(−1)n
∂nM ′

∂kn
|k=0 = mn (199)

4 In the k-space
4.1 The Characteristic Function
Now that we have defined the moment generating function M(k), and the closely related Laplace trans-
form of the probability density function P (x),M ′(k), we can define the fourier transform of the probability
density function:

φ(k) = M ′(ik) (200)

φ(k) =

∫
e−ikxP (x)dx (201)

Or, in more compact notation one can write

P (x) ⊃ φ(k) (202)
P (x) = φ(k). (203)

This characteristic function, by virtue of the Fourier transform has some very interesting properties:

1. As P (x) gets thinner, φ(x) gets both wider and diminished, since for a > 1

P (ax) =
1

a
φ(k/a) (204)

2. φ(0) = m0, or, a properly normalized PDF will yield φ(0) = 1. This is related in higher dimensions
to the fact that the supremum of φ is less than or equal to the 1 norm of P :

‖P‖∞ ≤ ‖P‖1 (205)
‖φ‖∞ ≤ ‖P‖1 (206)

3. Since the probability density function P (x) ≤ 1, ∀x we know that P (x)2 ≤ P (x), allowing us to
use Fourier analysis for L2 integrable functions, which introduces a few more properties:

∫
P (x)2dx =

∫
φ(k)φ?(k)dk (207)∫

|P (x)|2dx =

∫
|φ(k)|2dk (208)

‖P‖2 = ‖φ‖2 (209)

Often called Parseval’s theorem. We also can assume that P (x) is the inverse fourier transform of
φ(k) – now that we are in L2 space, a small but important point – allowing us to write

P (x) =
1

2π

∫
φ(k)eikxdk (210)

27

4. Finally, we can now formulate the moments of our probability density function in terms of the k
derivatives evaluated about zero of our characteristic function:

φ(k) =

∫
e−ikxP (x)dx (211)

∂nφ

∂kn
|k=0 =

∫
(−ix)nP (x)dx (212)

∂nφ

∂kn
|k=0 = (−i)nmn (213)

in
∂nφ

∂kn
|k=0 = mn (214)

Pretty nifty right? Although, we have done nothing illuminating, this simply illustrates that proper-
ties of differentiating a fourier transform pair.

This characteristic function can be useful in the following way, let us use Eq. (210) and place φ(k)
into the exponential term:

P (x) =
1

2π

∫
elog φ(k)+ikxdk (215)

=
1

π

∫
eψ(k)+ikxdk (216)

We can now examine what are called the “cumulants” of the distribution, which are created by the k
derivative of our “cumulant generating function” ψ(k) about zero. We define

in
∂nψ(k)

∂kn
|k=0 = cn (217)

Let’s examine the first few cumulants.

ψ(k) = log φ(k) (218)
∂ψ(k)

∂k
|k=0 =

1

φ(k)

∂φ

∂k
|k=0 (219)

∂ψ(k)

∂k
|k=0 =

1

φ(k)

∂φ

∂k
|k=0 (220)

∂ψ(k)

∂k
|k=0 =

m1

i
(221)

(222)

This is the first cumulant: c1 = m1.

∂2ψ(k)

∂k2
|k=0 =

−1

φ(k)2
(
∂φ

∂k
)2|k=0 +

1

φ(k)

∂2φ

∂k2
|k=0 (223)

= −(
m1

i
)2 +

m2

i2
(224)

i2
∂2ψ(k)

∂k2
|k=0 = m2 −m2

1 (225)

c2 = m2 −m2
1 (226)

28

This is the second cumulant c2, which is strangley enough, the variance of our probability density
function. For a few more cumulants (we can leave these to the reader as an exercise):

c1 = m1 (227)
c2 = m2 −m2

1 (228)
c3 = m3 − 3m2m1 + 2m2

1 (229)
c4 = m4 − 4m3m1 − 3m2

2 + 12m2m
2
1 − 6m4

1 (230)

We can now write our cumulant generating function in a taylor expansion

ψ(k) = −ic1k −
k2

2
c2 + i

k3

3!
c3 +

k4

4!
c4 + . . . (231)

Notice that ψ(0) = 0. This expansion will be very useful to us later.

4.2 Addition of random Variables: Addition of Cumulants
Let us begin with a theorem in statistics, which leads to some very interesting properties in terms of the
cumulants and adding two random independent variables:

Theorem 2. Let X and Y be two independent random variables with density functions fx(x) and fy(y),
then the sum z = x+ y is a random variable with density function fz(z), where fz is the convolution of fx
and fy.

Proof. Let us construct the cumulative density function for the variable z, which is a sum of two indepen-
dent random variables z = x+ y,

F (x+ y) =

∫ ∫
P (x)P (y)dxdy (232)

F (x+ y) =

∫ ∞
−∞

∫ z−y

−∞
P (x)P (y)dxdy (233)

F (x+ y) =

∫ ∞
−∞

F (z − y′)P (y′)dy′ (234)

(235)

Taking the derivative of this cumulative density function F we get the convolution of our two density
functions:

∂F (x+ y)

∂z
=

∫ ∞
−∞

∂F (z − y′)
∂z

P (y′)dy′ (236)

P (x+ y) =

∫ ∞
−∞
{ ∂
∂z

∫ z−y

−∞
P (x)dx}P (y′)dy′ (237)

Pz =

∫ ∞
−∞

P (z − y′)P (y′)dy′ (238)

Pz = (Px ∗ Py)(z) (239)

And so we find that the new probability density function is the convolution of the two former density
functions.

29

So, if we want to describe the sum of two independent variables, we can represent the resulting charac-
teristic function φz as the multiplication of the two initial characteristic functions. These leads to a curious
property of the cumulants:

φ(kz) = φ(kx)φ(ky) (240)

P (z) =

∫
φ(kx)φ(ky)e

ikzzdk (241)

=

∫
elog φ(kx)+log φ(ky)eikzzdk (242)

=

∫
eψ(kx)+ψ(ky)eikzzdk (243)

ψ(kz) = ψ(kx) + ψ(ky) (244)

in
∂nψ(kz)

∂kn
= cxn + cyn (245)

czn = cxn + cyn (246)

Thus, cumulants are additive under convolution. For example, if a random variable X has a density
function fx with variance σ2

x, we know that by Theorem (2), adding another independent random variable
Y with density function fy and variance σ2

y , we have a new probability density function fz with variance
σ2
z = σ2

x + σ2
y .

This concept is incredibly important for random walks, where one has a “blind” turtle that takes random
steps within euclidean space. The final position of the turtle can be viewed as a random variable Z which
is the sum of all the independent but identical steps Z = ΣiXi. The variance of this distribution will
of course be the sum of the variance’s of each and every step along the way, and so will therefore be
proportional to the square root of the number of steps, σz ∼

√
N . We will also find the characteristic

function of Z, φ(kz) will be the multiplication of all the former steps’ characteristic function φ(kx), which
leads immediately to the central limit theorem.

4.2.1 Addition of Random Variables 2: A Note on ”Support”

Now, note that in the former discussion, we expected the two random variables to be in the range −∞ →
∞. This range of possible values is called the support for a probability density function. This worked out
quite well above, in that we had a standard convolution to combine probability densities. But what if the
support of our random variables X, Y is, say, 0→∞?

Let’s take a look, using the same methods

S = X + Y (247)
X ∼ f(x) (248)
Y ∼ g(y) (249)
S ∼ ? (250)

We can now write X = S − Y , but we can’t integrate our variable y from zero to infinity, because
that would imply X has a negative value!!! The limiting case of our random variable Y in this setup is S,
corresponding to X = 0. And so we have:

30

Φ(S) = P (S ≤ s) =

∫ s

0

F (s− y)g(y)dy (251)

∂Φ(S)

∂s
= P (s) =

∫ s

0

f(s− y)g(y)dy (252)

(253)

So, now our integration range has fundamentally changed, but no matter, we see the corrollary. We are
essentially performing a ”convolution” or overlap of the probability densities, but over our proper support
0→ s.

4.2.2 Multiplication of two Random Variables

For the multiplication of two random variables on the support 0→∞, let us start with the setup

Z = XY (254)
X ∼ f (255)
Y ∼ g (256)
Z ∼ ? (257)

We write

Φ(z) = P (Z ≤ z) =

∫ ∞
0

F (
z

y
)g(y)dy (258)

P (z) =

∫ ∞
0

f(
z

y
)g(y)

dy

y
(259)

4.2.3 Square of a Random Variable

Now let

Z = X2 (260)
X ∼ f (261)

Z = X2 ∼ ? (262)

We write

Φ(z) = P (Z ≤ z) = P (x ≤
√
z)− P (x ≤ −

√
z) (263)

= F (
√
z)− F (−

√
z) (264)

P (z) =
1

2
√
z

[
f(
√
z) + f(−

√
z)
]

(265)

P (x2) =
1

2x
[f(x) + f(−x)] (266)

If f(x) = f(−x) – is an even function – we can write:

P (x2) =
f(x)

x
(267)

31

4.2.4 Square Root of a Random Variable

Note that, if we define Z as the square root of a random variable, we have to treat the situation differently:

Z =
√
X (268)

X ∼ f (269)
Z ∼ ? (270)

We can write

Φ(z) = P (Z ≤ z) = Φ(X ≤ z2) (271)
∂Φ(z)

∂z
= g(z) = 2zf(z2) (272)

g(
√
x) = 2

√
xf(x) (273)

So we do not have a clean inverse of moving between squares and square roots of random variables;
there is this pesky factor of two lying around here!

4.3 Sample Spaces and Treating PDF’s as Waves
For two observables x and y, we associate two sample sample spaces, which consist of all the possible
ways of measuring outcome x. Specifically we can write the probability of observing outcome x as the
ratio Nx – the number of outcomes which constitute x being measured – and N – the total number of
outcomes in the sample space.

P (x) =
Nx

N
(274)

We can even construct concepts such as conditional probability based on the intersection and union of
sample spaces.

4.4 The Multidimensional Central Limit Theorem
Let us begin with a brief review; the definition of a normalized probability distribution:

∫ ∞
−∞

P (x)dx = 1 (275)

and a moment,

∫ ∞
−∞

xnP (x)dx = mn (276)

Notice thatm1 is the ‘mean’ or average, or, ‘center of mass’ of the Probability distribution. The second
moment, m2 is intimately related to the variance, or width of our distribution P (x).

We can define the moment generating function as

∫
ekxP (x)dx = M(k) (277)

32

Where now, taylor expanding our exponential integrand, we see that the nth derivative of M(k) with
respect to k evaluated at k = 0, gives the respective moments:

M(k) =

∫
ekxP (x)dx (278)

=

∫
Σn

(kx)n

n!
P (x)dx (279)

∂nM

∂kn
|k=0 =

∫
xnP (x)dx (280)

∂nM

∂kn
|k=0 = mn (281)

We can also define the moment generating function as the laplace transform of P (x), which leaves us
with an added sign convention in the definition of our moments,

M ′(k) =

∫
e−kxP (x)dx (282)

(−1)n
∂nM ′

∂kn
|k=0 = mn (283)

Now we are in a position to define the fourier transorm of our probability distribution, called the
characteristic function,

M ′(ik) = φ(k) =

∫
e−ikxP (x)dx (284)

We can simply think of φ(k) as the fourier transform of P (x), and note that φ(0) = 1 always – as
required by our normalization condition above.

Writing the inverse fourier transform, we can now write P (x) in terms of k−space components,

P (x) =
1

2π

∫
eikxφ(k)dk (285)

=
1

π

∫
eikxelog(φ(k))dk (286)

Where I have used the 1
2π

for inverse fourier normalization conventions (not the same as the QM
convention!).

I would now like to define cumulants which, are the corresponding derivatives of the ψ(k) = log (φ(k))
function, seen the exponential argument of the above equation. First, notice that under the fourier trans-
form, multiplication in x-space is differentiation in k-space, i.e.

F [xP (x)] = (−i)∂φ
∂k

(287)

and so we find that the various moments can be defined by the partial derivatives of the characteristic
function (not much different than what we did before with the moment generating function M ′, under
simply a change of variable):

mn = (−i)n∂
nφ

∂kn
|k=0 (288)

33

Using our ψ(k) function from before, we can now define the cumulants

cn = (i)n
∂nψ

∂kn
|k=0 (289)

which, can be constructed out of our initial moments,

c1 = m1 (290)
c2 = m2 −m2

1 (291)
c3 = m2 − 3m2m1 + 2m2

1 (292)
c4 = m4 − 4m3m1 − 3m2

2 + 12m2m
2
1 − 6m2

1 (293)

Notice that the first cumulant is our standard mean, or average, and that the second cumulant is our
definition of variance, or the expectation value of difference from the mean. (i.e. c1 = x̄ and c2 = σ2 =
E[(x − x̄)2]). These cumulants are very good descriptors of a statistical distribution because they add
under convolution. Let’s take a closer look.

Under the fourier transform, convolution in x-space is multiplication in k-space – see convolution
theorem – and so cumulants and cumulant-generating functions add under convolution. In probability
theory, when one adds two statistically independent variables x and y in order to create a new variable
z = x+y, then the probability distribution that describes z is the convolution of the two former probability
distributions: P (z) = (Px ? Py) (z). Let’s see what such an addition would do in fourier space,

P (z) = (Px ? Py) (z) (294)
= F−1 [φx(k)φy(k)] (295)

=
1

2π

∫
eikxφx(k)φy(k)dk (296)

=
1

2π

∫
eikxelog(φx(k))elog(φy(k))dk (297)

=
1

2π

∫
eikxeψx(k)+ψy(k)dk (298)

(299)

Expanding both cumulant-generating functions as a taylor series, and collecting like powers of k, we
find

P (z) =
1

2π

∫
eikxe−ic1xk−c2xk

2/2+ic3x
k3

3!
+...e−ic1yk−c2yk

2/2+ic3y
k3

3!
+...dk (300)

=
1

2π

∫
eikxe−i(c1x+c1y)k−(c2x+c2y)k2/2+i(c3x+c3y) k

3

3!
+...dk (301)

(302)

Notice that c1z = c1x + c1y and c2z = c2x + c2y, or the mean is the sum of the two former means, and
the variance is the sum of the two former variances. Very cool!

Under what are called identically independent processes, such as random walks, we have a new vari-
able z = σxi, which is a superposition of independent variables that are described by the exact same
probability density function. In this case, our expectation value – or first moment – for the variable z be-
comes Nm1z = Nx̄, where N is the number of ‘steps’ or ‘trials’ taken. Similarly we find that the variance
of the sum of random variables is σ2

z = Nσ2
x. Or the variance grows as

√
N .

34

The central limit theorem depends intimately upon this addition of cumulants under convolution, and
uses the inverse properties of expansion and dilation under the fourier transform to truncate the taylor
expansion of our effective cumulant generating functions. Let’s take a look at an ‘iid’ process, or P (z),
where z = Σxi.

P (z) =
1

2π

∫
eikzΠN

i=1φi(k)dk (303)

P (z) =
1

2π

∫
eikzeΣiψi(k)dk (304)

P (z) =
1

2π

∫
eikzeΣi(−ic1i)−ikeΣi(−c2i)−k

2

2 + · · · dk (305)

As we convolve more and more probability density functions, our variances will add, and we will end
up with an extremely wide density function. In fourier space, this corresponds to an extremely narrow
characteristic function, and allows us to assume negligible value of φ(k) at high k-values. Thus, we can
write

ψ(k) = −ic1k − c2
k2

2
+ ic3

k3

3!
− c4

k4

4!
+ . . . (306)

as

ψ(k) ≈ −ic1k − c2
k2

2
(307)

Taking this into account – and noting that the c1 and c2 are in fact sums of former means and variances
under convolution – we can now write P (z) as,

P (z) =
1

2π

∫
eikze−ic1ke−c2

k2

2 dk (308)

P (z) =
1

2π

∫
eikze−ic1ke−c2

k2

2 dk (309)

Setting z′ = z − c1, or, centering about the mean we can exclude the first exponential and write

P (z′) =
1

2π

∫
eikz

′
e−c2

k2

2 dk (310)

This is the fourier transform of a gaussian, which is itself a gaussian,

P (z′) =
1√

2πc2

e
−z2
2c2 (311)

P (z) =
1√

2πσ2
e
−(z−c1)2

2σ2 (312)

P (z) =
1√

2πσ2
e
−(z−z̄)2

2σ2 (313)

Whew! Notice that our mean and variance in this final equation are simply the sums of former means
and variances of the independent variables, xi that created z. (z = Σixi ; c1 = Σic1i ; c2 = Σic2i). The

35

central limit theorem does not depend on each of these variables – perhaps N of them – being identical,
or, described by the same probability density function, they need only be independent.

Now, extrapolation to multiple dimension is not to bad, we now deal with random vectors as com-
pared to random scalars. Let’s represent these vectors with boldface, and label their components with a
superscript. We can now write

z = Σjx
j (314)

Where the superscript denotes the jth independent random vector. Similarly, our k space is now
multidimensional, and so we write the forward fourier transform of our probability density as

φ(k) =

∫
eik·xP (x)ddx (315)

φ(k) =

∫
eikixiP (x)ddx (316)

The cumulants and the moments are now rank n tensors, seen by the following

∂nM

∂ki∂kj · · · ∂kγ
|k=0 = (−i)nmij···γ (317)

∂nψ

∂ki∂kj · · · ∂kγ
|k=0 = (−i)ncij···γ (318)

We now use the same approximation scheme as before, convolving an absurd number of multi-dimensional
probability density functions, P (xi) in order to yield a convolution in fourier space – and thus an addition
of cumulant generating functions

P (z) =
1

(2π)d

∫
eik·zeΣψi(k)ddk (319)

P (z) =
1

(2π)d

∫
eik·ze−iciki)e−ikicijkj)e−icijkkikjkk) · · · ddk (320)

(321)

Truncating our taylor expansion and centering about the multidimensional mean z′i = zi − ci,

P (z′) =
1

(2π)d

∫
eik·z

′
e−ikicijkj)ddk (322)

(323)

We can rescale coordinates by writing

w =
√

cijkj (324)

where, the square of a matrix can be written terms of its diagonalization by two unitary matrices Sij ,
and the diagonal matrix of eigenvalues Λij = δijλi,

36

cij = S−1ΛS (325)
cij = SilλlδlmSlj (326)
√

cij = Sil
√
λlδlmSlj (327)

w =
√

cijkj (328)

The determinant of this matrix will be the product of the eigenvalues λj , which is also the dilating
factor by which one expands a single k vector; so we can now write our infinitesimal volume element in
d-dimensional k space using this determinant,

ddw = (|cij|)d/2 ddk (329)

Now rewriting our integral, we have a multi-dimensional transform of a Gaussian, which is another
Gaussian

P (z′) =
1

(2π)d

∫
e
i

wj√
cij

z′ie−
wiwi

2
ddw

|cij|d/2
(330)

P (z′) =
1

(2π|cij|)d/2
exp

(
−1

2

z′l
cil

z′γ
ciγ

)
(331)

Whew! The argument in the exponential – namely, those nasty matrix multiplications into the second
cumulant matrices – can be simplified, yielding a single covariance matrix on the bottom.

P (z′) =
1

(2π|cij|)d/2
exp

(
−1

2

z′l
cil

z′γ
ciγ

)
(332)

5 Connection with Linear Stochastic ODE’s
So a few friends of mine are working on Stochastic ODE’s and their connection to path integrals. After
dorking out about this for a few moments, I’m able to make some “baby” statements about the problem.
If you consider a sequence of random numbers:

{Xi}ni=1 (333)

which is determined by the following difference equation:

dXi = Xi+1 −Xi = ai + Wi (334)

subject to the initial condition X0 = 0
You can express the solution as a sum of two sums – one deterministic and one random.

Xn =
n∑
i=0

ai +
n∑
i=1

Wi (335)

Where I have boldfaced all random variables. For instance ai is a real sequence of numbers, perhaps
they are the same for all i. W is a noise variable, or some random forcing function. We see that the
solution after N steps will be

37

Xn = na+
n∑
i=1

Wi (336)

Now, if we see that Wi is drawn from some probability distribution at every single step i, we know
that, at asymptotic times N → ∞, subject to certain conditions on the probability density of Wi, our
distribution on X will converge to a Gaussian. This is very cool, and not necessarily dependent on W
being an identically independently distributed variable. We simply say that if

Wi ∼ N(0, σ2) ∀i (337)

then,

XN ∼ na(t) +N(0, nσ2) (338)

Where N(0, σ2) stands for a normal distribution with zero mean and variance σ2. Note that, this is
simply a conclusion from the addition of cumulants under convolution – which is what you do when add
random variables.

Z = X + Y (339)
X ∼ N(c1, c2) (340)
Y ∼ N(c′1, c

′
2) (341)

Z ∼ N(c1 + c′1, c2 + c′2) (342)

So our cumulants add, and the central limit theorem hinges upon this, because since our characteristic
function – or the fourier transform of our probability distribution – is bounded above by one (1), when we
convolve tow distributions in real space we multiply in frequency space, making the characteristic function
of our result variable Z – which is very much like an average, thinner and thinner and thinner... Meaning
that you can truncate the characteristic function’s cumulant generating function ψ at order k2, leading to a
Gaussian.

This means that any sum of random variables, even they are not identically and independently dis-
tributed – although they must be independent in order to convolve – and even if those variables have
non-zero higher order cumulants, like skewness c3 or kurtosis c4, will give you a Gaussian in the n→∞
limit. This is an analog of the law of large numbers.

So why do we care in this Stochastic ODE case? It means that under linear dynamics, at asymptotic
times, we converge to a Gaussian distribution on X, even our noise function itself has very strange prop-
erties, like higher order cumulants. This is very strange indeed, and comes from the fact that system is
linear, i.e. we are adding random variables together.

Under non-linear evolution, it can be shown using Perturbation theory that non-zero third and higher
order moments are created, but showing this in the stochastic framework is a bit difficult . . .

It is easy to show however, that an equation like:

L0δ = δ2 (343)

where L0 is some linear differential operator, can be expanded in power series of small parameter λ

L0δ = λδ2 (344)

δ =
∞∑
i=1

λiδi (345)

38

So we have, to each order:

λ0 : L0δ0 = 0 (346)

which is our linear solution. Then we have to leading order:

λ1 : L0δ1 = δ2
0 (347)

Now we find, that if we take the connected third moment, or the third cumulant, we get a nonzero
value:

〈δ3〉 = 〈δ3
0〉+ λ〈δ2

0δ1〉+ . . . (348)

If δ0 is Gaussian distributed, as we found that we would be for some driving function at asymptotic
times – or if we simply assume Gaussian initial conditions – then we know that 〈δ3

0〉 = 0. The leading
order term however, will not be zero, because it goes like ∼ δ4

0 , which under Wick’s theorem/Gaussian
statistics can be built out of second moments.

So we see that “Gaussian” nonlinearity will drive one away from Gaussianity. But the question is, how
to express this in stochastic differential equations, which seem to show that even for very strange “noise”
functions, our asymptotic solutions for X go Gaussian.

6 The Gram Charlier Expansion
For distributions that are “mildly non-gaussian” there is a clever expansion of

7 A few standard Distributions
7.1 The Binomial Disribution
The binomial distribution is a description of indistinguishable successes and failures, given a number
of trials. For example, let us ask how many steps forward a drunken man is likely to take if he has a
probability p of stepping forward – success – and a probability q of “staggering” in place – failure. Let
each step be of unit length. Let the drunken man make a total of N “stepping trials”.

If each and every step is distinguishable, we can label them as

s1, s2, s3, . . . sN , (349)
and there are N ! ways of ordering these steps; since one has N choices of placing s1, then (N − 1)

choices of placing s2, and so on. This is the case where successful trials are distinguishable. But we are
only interested in the final number of forward steps – or, the final number of successes – and so these steps
are indistinguishable. Therefore, there are(

N
k

)
=

N !

(N − k)!k!

. ways of taking k steps forward. We say this because the k! orderings of successes are indistinguishable,
and the (N − k)! orderings of failures are indistinguishable. For every success we must multiply our total
probability by p, and for every failure we must multiply by q, and so we find the Probability of taking k
steps forward is:

P (k) =

(
N
k

)
pkqN−k. (350)

This is called the binomial distribution.

39

7.1.1 Binomial Distribution in the Limit

If we imagine our drunken man taking many, many, many steps, or N → ∞, then the expression above
can be simplified using some curious identities. Let us first establish q = 1 − p, and note that as N gets
very large, we can write our Binomial distribution as:

P (k) =
N !

k!(N − k)!
pkqN−k. (351)

Let’s take a quick look at those large factorials, using something call stirling’s approximation

7.2 Stirling’s Approximation and the Poisson Distribution
To take a quick detour, let us examine the following definition of the factorial:

N ! =

∫ ∞
0

xNe−xdx (352)

One way to prove this is to write

I(a)

∫ ∞
0

e−axdx =
1

a
(353)

and take the derivative underneath the integral sign, to write:

I ′(a) =
∂

∂a

∫ ∞
0

e−axdx (354)

=

∫ ∞
0

−axe−axdx (355)

=
−1

a2
(356)

and more generally,

∂nI(a)

∂an
= (−1)n

∫ ∞
0

anxne−axdx =
(−1)nn!

an+1
(357)

Setting a = 1 we find

Γ[n+ 1] =

∫ ∞
0

xne−xdx = n! (358)

Now let’s examine this integral in the limit n→∞. We can take our x argument up, into the exponen-
tial and write the corresponding function as f(x):

n! =

∫ ∞
0

e−x+n log xdx (359)

=

∫ ∞
0

ef(x)dx (360)

f(x) = −x+ n log x (361)

40

Now f(x) is an absurdly large – or high-valued – function for large n, and so we can approximate
this integral as only ”counting” contributions around the maximum of f(x). We find the position this
maximum in the normal way:

f ′ = −1 +
n

x
= 0 (362)

x0 = n (363)

Taking a look at our second derivative

f ′′|x0 = − n

x2
= − 1

n
< 0 (364)

we see that x0 is the position of a true maximum. Expanding out our f(x) with a Taylor approximation:

n! ≈
∫ ∞

0

ef(x0)+f ′(x)|x0 (x−x0)+f ′′(x)|x0
(x−x0)2

2 dx (365)

(366)

We see that the first derivative term is zero by construction, and we are left with a constant times a
Gaussian,

n! ≈ e−n+n logn

∫ ∞
0

e
(x−x0)2

2n dx (367)

≈ nne−n
∫ ∞

0

e
(x−n)2

2n dx (368)

(369)

Now this integral is tricky, because we are taking the limit as n → ∞, which means that, essentially,
the middle of our Gaussian distribution is far afield from x = 0. Since the integral of any Gaussian
e−x

2/(2σ2) is
√

2πσ2, we can approximate the integral above to be the ”full” −∞ < x < ∞ integration,
because our moment, or center of the distribution, x0 is far to the positive side of zero. This yields, with
σ2 =

√
n:

n! ≈ nne−n
√

2πn (370)

Which is the so-called Stirling’s approximation.
Now if we use this approximation to examine the binomial distribution in the same limit:

P (k;N) =
N !

k!(N − k)!
pk(1− p)N−k (371)

We write our factorials as:

P (k;N) =
1

k!

√
2πNNNe−N√

2π(N − k)(N − k)(N−k)e−N+k
pk(1− p)N−k (372)

Cancelling our
√

2π terms and writing λ = Np, the expected value of our coin flips, given N trials
and proabability p:

41

P (k;N) ≈ 1

k!

√
NNNe−N√

(N − k)(N − k)(N−k)e−N+k

(
λ

N

)k (
1− λ

N

)N−k
(373)

. . . cancelling our square roots . . . (374)

≈ 1

k!

NNe−N

NN−ke−N+k

(
λ

N

)k (
1− λ

N

)N (
1− λ

N

)−k
(375)

≈ 1

k!

NNe−N

NN−ke−N+k

(
λ

N

)k
e−λ

(
1− λ

N

)−k
(376)

≈ λk

k!

NNe−N

NNe−N+k
e−λ

(
1− λ

N

)−k
(377)

≈ λke−λ

k!

1

ek

(
1− λ

N

)−k
(378)

≈ λke−λ

k!
(379)

So we find, that in the large N → ∞ limit, our binomial distribution becomes a poisson distribution,
characterized by an ”infinite” number of samples N – or coin flips – and an expectation value λ.

7.2.1 Properties of the Poisson

7.2.2 The Exponentially Damped PDF

Now, another way to get to the Poisson distribution is through something called an exponential distribution.
Let X be a random variable between zero and infinity, described by the probability density g.

X ∼ g(x) (380)
0 < X <∞ (381)

g(x) = αe−αx (382)

g(x) is a ”memoryless” probability distribution, in the sense that, if we construct the cumulative prob-
ability function,

Φ(x) = = P (X ≤ x) =

∫ x

0

g(x)dx = 1− e−αx (383)

P (X ≥ x) = e−αx (384)

We see that

P (X ≥ y + z) = P (Y ≥ y)P (Z ≥ z) (385)

This simple rule of multiplication means that events are not conditionally related. Observe that, for
this distribution, the mean is m1 = 1/α and second cumulant c2 = 1/α2.

Now imagine we were adding a number of ”memoryless”, Random variables X1, X2, X3, . . . , each
determined by same the exponential distribution g(x). This would be similar to asking, ”What’s the
Probability of the total waiting time for N line-queue-ers to be s?”

s = X1 +X2 + . . . XN (386)
Xi ∼ g (387)

42

We have learned that adding Random variables can be described as convolving the probability densi-
ties, and so we find

s ∼ gN = (g ? g ? g · · · ? g)(s) “N convolutions” (388)

We can find this probability density with a recursion relation:

gn+1(s) =

∫ ∞
0

gn(s− x)g(x)dx (389)

Looking at our base case:

g2(s) =

∫ s

0

α2e−α(s−x)e−αxdx (390)

=

∫ s

0

α2e−αsdx (391)

= α2se−αs (392)

Continuing on, we will find that each sucessive integration brings in another factor of α and performs
an incomplete Gamma integration:

g3(s) =

∫ s

0

α3(s− x)e−αsdx (393)

= αe−αxγ(3,
s− x
α

) (394)

γ(n, a) =

∫ a

0

xn−1e−xdx (395)

This more generally results in

gn(s) = α
(αs)n−1

(n− 1)!
e−αs (396)

Or, the probability that the total waiting time ”S” – the sum of waiting timesX of n identical processes
– is between s+ δs and s− δs.

Now if we are to construct the conditional probability of this distribution, that will be a very tricky
process, since we can see that the integral would involve doing many, many integrations by parts. We can
do this, nonetheless by tabulation, and write:

Gn+1(s) =

∫ s

0

gn+s(s)ds = 1− e−αs
(

1 + αs+
(αs)2

2
+

(αs)3

3!
· · ·+ (αs)n

n!

)
(397)

= 1− e−αs
(
eαs −

∞∑
i=n+1

(αs)i

i!

)
(398)

= e−αs
∞∑

i=n+1

(αs)i

i!
(399)

(400)

43

This is the probability of exactly n + 1 processes with random variable waiting times adding up to S
or less than S. Or written more clearly:

Xi ∼ g(x) (401)
Gn+1(s) = P (X1 +X2 + · · · ≤ s) (402)

Now if we want the probability that exactly n processes add up to the waiting total time s, we could
take the difference

Gn+1(s)−Gn(s) = e−αs
∞∑

i=n+1

(αs)i

i!
− e−αs

∞∑
i=n

(αs)i

i!
(403)

=
(αs)n

n!
e−αs (404)

Strange, because s is our total observation time, and α is the expected value for a single process. This
looks a lot like our former expected value for an entire sampling period N in the case of coin flips for
N →∞, just a more continuous case.

Writing αs = λ, we get back the Poisson distribution (!):

Gk+1(s)−Gk(s) = P (n;λ) =
λk

k!
e−λ (405)

7.3 Gamma Densities
Now, we have already constructed our exponential ”memoryless” distributions g(x) and gn(s), convolving
the probability densities with each other in order to describe the sum of waiting times. We can also
construct something called a Gamma Probability density, which is like gn(s), but accounts for having
”half” or non-integer members n:

fα,ν(x) =
1

Γ(ν)
ανxν−1e−αx (406)

For integer values of ν we get back our former density gn(s).
These Gamma densities have a nice property in that they are closed under convolutions:

(fα,µ ? fα,ν)(x) = fα,µ+ν(x) (407)

And also, we note that the mean and variance of these Gamma densities are:

m1 =
ν

α
= να−1 (408)

c2 =
ν

α2
= να−2 (409)

Or simply, ν times the typical mean and variance of a single exponential distribution. The gamma
densities, for integer ν can be used to model the waiting time of ν simultaneous processes.

44

7.4 The Chi-Squared Distribution
Let us now talk about the sum of the squares of a random variable, where each one is determined by a
Gaussian distribution:

X ∼ η(x) =
1√
2πσ

e
−x2

2σ2 (410)

This normal distribution can actually be written in terms of a Gamma density:

η(x)

x
= f 1

2σ2 ,
1
2
(x2) (411)

And so we see that, if we were to construct a random variable Z, which is the square of a random
variable X , we would have

Z = X2 (412)
X ∼ η(x) (413)

X2 ∼ η(x)

x
= f 1

2σ2 ,
1
2
(x2) (414)

If we are to add up multiple Zi variables, such that we have, for instance,

χ2 =
d∑
i

Zi (415)

χ2 =
d∑
i

X2
i (416)

(417)

Then χ2 is described by a simple convolution of the probability densities – the gamma f 1
2σ2 ,

1
2

– given
above!

χ2 ∼ f 1
2σ2 ,

d
2
(χ2) (418)

f(χ2) =
χd−2

Γ
(
d
2

) 1

2d/2σN
e
−χ2

2σ2 (419)

g(χ) = 2
√
χ2f(χ2) =

χd−1

Γ
(
d
2

) 1

2(d/2−1)σN
e
−χ2

2σ2 (420)

This final probability distribution could be described as the radial density (χ→ r) of a random walker
in d-dimensions, where each step is governed by a gaussian distribution of variance σ. (If you want to
look ahead to more advanced things, take a look at the volume of a d-dimensional ball (Section 29.4) and
see how the normalization factors compare).

Now, let us relabel the variances σ2 as the effective variance after N steps σ2 = Nσ2
1 , for the N = 2, 3

case, we have:

P2(R) =
R

Nσ2
Exp

[
−R2

2Nσ2

]
(421)

P3(R) =
R2√

π
2
(Nσ)3/2

Exp

[
−R2

2Nσ2

]
(422)

The two dimensional case – without the N ’s – is the standard Rayleigh Distribution.

45

n=1

n=2

n=3

n=4

2 4 6 8 10 12

0.2

0.4

0.6

0.8

1.0

Rayleigh Distribution

Figure 3: Rayleigh Distribution for 2-dimensions, f(x) = x
n
e
−x2

2n with unit variance σ = 1 and the number
of steps n equal to various integers. One can see immediately that, for a random walker in two dimensions,
the number of steps has a profound effect on the probability density of radius. Our expectation for r is
”smeared” out with more and more steps, n.

46

8 In the Sample space
In probability theory, we use sets to describe something called a sample space, which is a collection of all
the possible outcomes of an experiment. Say we are interested in the probability of an outcome A. We
represent this probability with the symbol P (A), and its calculation is a simple ratio:

P (A) =
of Sample Space members that yield outcome A

Total # of sample space members
(423)

Note that with this equation, we can have multiple members that yield the same example. For example,
say we flip a quarter two times. Our sample space, S, is:

TT

TH

HT

HH

Four members. If we are interested in the probability of flipping one heads and one tails, we find
P (1H) = 2

4
, because there are two members of the sample space that yield this outcome. The probability

of flipping two heads is P (2H) = 1
4
, because there is only one satisfactory member of the sample space.

Conversely, for two tails, we find P (2T) = 1
4
. If we add up all of these probabilities, we find:

P (2T) + P (2H) + P (1H) = 1

Which is required for any proper normalized probability density – except now, we’re using discrete
counting of sample space members to determine probability.

8.0.1 N Flips of a coin

The case gets a bit harder if we flip a coin N times. Now, the sample space will contain 2N members, and
if we are interested in the probability of flipping 2 “heads”, then we must use combinatorics to describe
our probability. If we take into account that Tails and Heads flips are indistinguishable, then there are

(
n
2

)
=

n!

2!(n− 2)!

members of the sample space which yield a total of two heads! If we compare this to the binomial
distribution, where p is the probability of a “success” – heads – and q is the probability of a “failure” –
tails, then the probability of two flips is a simple binomial distribution:

P (2 heads) =

(
n
2

)
p2qN−2

If we note that, for a flipping coin p = q = 1
2
, we find,

P (2 heads) =

(
n
2

)
(
1

2
)2(

1

2
)N−2

P (2heads) =

(
n
2

)
1

2

N

P (2 heads) =

(
n
2

)
2N

47

And this final equation is simply a ratio of the number of sample space members that yield two heads,
divided by the total number of sample space members. Pretty cool right? Our probability of an outcome
of k heads is simply the ratio

P (k heads) =

(
n
k

)
2N

(424)

.
Which, is intimately related to the following identity:

2n = 1 +

(
n
1

)
+

(
n
2

)
+

(
n
3

)
+ . . .

(
n

n− 1

)
+

(
n
n

)
= Ω (425)

We see that this equation is a representation of our sample space for n coin flips! This sample space has
Ω equally probable members. In statistical mechanics Ω represents the number of ”accessible” microstates,
or the number of ways in which a system can orient itself ”quantum mechanically” (since, after all, small
systems must make discrete & definite choices of things like spin, angular momentum, etc. just like the
flipping of a coin.)

8.0.2 Conditional Probability

When dealing with multiple outcomes, sayA andB we are often concerned with the likelihood of outcome
A given B has already happened. We normally write this as

P (A|B). (426)

And conversely, the probability of outcome B, given A has already happened is

P (B|A). (427)

These are tricky concepts to deal with, because we are not sure if

P (B|A) = P (A), (428)

which means outcomeB has no effect upon the outcomeA – the two events are said to be uncorrelated, or,
statistically independent. One can represent this conditional probability with an equation, called Bayes’
theorem, which states:

P (B)P (A|B) = P (A ∩B) (429)

In words the right hand side of the equation reads: ”The probability that outcome A and B both happen.”
The left hand-side of the equation reads ”the probability that B happens time the probability that A hap-
pens, given B has already happened. Summarizing: ”The probability that A and B happen, is equal to the
probability that B happens, times the probability that A happens, given B has already happens”. Enough
casuistry. What the heck does that mean? This is intimately related to a tree diagram, where on represents
branching probabilities to reach final results.

Exercise: Create such a conditional probability tree for three coin flips, drawing out the diagram for
the four possible results TT, TH,HT,HH . What is the conditional probability of the second flip? Are
two coin flips statistically independent? See Fig. 8.0.2 for solution.

One can now see how conditional probabilities are simply the “second branches” in a probability tree.

48

Figure 4: Notice how our first branch is split between outcome A happening, P (A), and outcome A not
happening P (A). The branching probabilities after this first event are “conditional”, in the sense that they
depend upon prior results. The second branches lead to our four final outcomes.

8.0.3 Set Definitions and Identities

For a quick review of sets, let us represent the outcomes A and B with a Venn-Diagram. We create two
circles, one which contains all the possible ways of getting outcome A, another circle which contains
all the possible outcomes of B. Both circles will be embedded in a rectangle, which represents the total
sample space S.

With this Venn-Diagram, we can now say that:

P (A ∪B) = P (A) + P (B)− P (A ∩B) (430)

This will prove extremely useful when playing with conditional probability. Let us go back to our
earlier expressions for conditional probability of the two outcomes A and B, except we will swap the
order of observation:

P (A)P (B|A) = P (A ∩B) (431)
P (B)P (A|B) = P (B ∩ A) (432)

Since the set intersection operator is commutative – (A ∩ B) = (B ∩ A) – we can combine the two
conditional probabilities above and write

P (x|y) =
P (X)P (y|x)

P (Y)
(433)

P (x|y) =
P (X ∩ Y)

P (Y)
(434)

These are slightly more refined versions of Bayes’ theorem.

49

Figure 5: Exercise Solution: Notice how our sample space is composed of eight total outcomes. The
probability of each branch is simply 1

2
, meaning each “flip trial” is statistically independent from previous

flips.

8.0.4 Partitioning the Sample Space

Let us motivate this concept with an important example. One of the most stressful outcomes of medicine is
a positive test for some rare disease. Let’s take Cancer. Normally, lab tests are described by their accuracy,
given a Cancer-ridden patient. For example:

P (+|C) = .99 (435)

Or, given a cancer-ridden patien, the test will return positive, 99% of the time. Conversely, we also
have an associated accuracy for negative tests, e.g.:

P (−|NC) = .95 (436)

Or, given a non-cancer-ridden patient, the test will correctly return negative 95% of the time. We are
interested in the following:

P (+|NC) = Probability of a false Positive (437)
P (−|C) = Probability of a false Negative (438)

Let’s focus on the false positive case. If we make a simple chart, we can see that the probability of
getting a positive test is described by:

P (+) = P (+|NC)P (NC) + P (+|C)P (C) (439)
P (+) = P (+ ∩NC) + P (+ ∩ C) (440)

We were able to write these equations because the outcomes C and NC fill up the entire sample space
S. In fact, for any set of events Hi whose sum fills up the sample space,∑

i

Hi = S, (441)

50

Figure 6: Notice how the intersection of A and B, or A ∩ B is represented by the middle region: it is the
probability of outcome A and B. Notice how A∪B is the entire area of both circles – or the probability of
outcome A or B. If outcomes A and B do not exhaust the sample space, then there is supposedly an outer
region of possibilities – the surrounding rectangle. This diagram uses an overline A to represent outcomes
other than A.

we can write

P (A) =
∑
i

P (A|Hi)P (Hi). (442)

which means that Bayes’ equation can be written:

P (A|B) =
P (A ∩B)∑

i P (B|Hi)P (Hi)
(443)

Or, if B is one of the Hi, we can write:

P (A|Hj) =
P (A ∩Hj)∑

i P (B|Hi)P (Hi)
(444)

=
P (Hj|A)P (Hj)∑
i P (B|Hi)P (Hi)

(445)

Wow, that’s a big equation! But for our purposes, in this equation, we have Hi = C,NC. Therefore,
we can write the probability of a false positive being:

P (NC|+) =
P (+|NC)P (NC)

P (+|NC)P (NC) + P (+|C)P (C)
(446)

Let’s play with this equation, and put everything in terms of P (NC). First we replace P (C) with
1− P (NC).

P (NC|+) =
P (+|NC)P (NC)

P (+|NC)P (NC)) + P (+|C)(1− P (NC))
(447)

Next, we substitute P (+|NC) = 1− P (+|C),

=
(1− P (+|C))P (NC)

(1− P (+|C))P (NC)) + P (+|C)(1− P (NC))
(448)

Notice how this result only depends upon the accuracy of the positive test: P (+|C). Let’s call this variable
A – for accuracy.

51

Figure 7: The Probability of a ”False Positive” Test for cancer as a function of Disease Incidence. Notice
that for population groups that are extremely low risk – high P (NC) – the probability of a ”false positive”
is quite high!

P (NC|+) =
(1− A)P (NC)

(1− 2A)P (NC)) + A
(449)

Plotting this probability of a false positive as a function of P (NC), we find a sharp increase as P (NC)
rises; which means that, for low risk groups – high P (NC) – the probability of a false positive is quite
high. This is an extremely important result for stressful diagnoses!

9 Parameter Estimation
9.1 Bayes Theorem, once again...
Now that we have introduced conditional probabilities, and “partitioning” our sample space into disjoint
sets, we can now discuss the estimation of parameters. The estimation of parameters essentially boils
down to a conditional probability, given some hypothesis. Let’s take our conditional probability structure
from before:

P (A|B) =
P (A ∩B)

P (B)
(450)

=
P (B|A)P (A)

P (B)
, (451)

or, Bayes’ basic theorem. Let us now call the event A the outcome that some parameter is correct –
for example the gravitational acceleration constant. Let us call the event B the observation of data – say,

52

the time it takes a rubber ball to drop from a roof. A can be framed as a disjoint family of sets, or a proper
partitioning of the sample space into different ’parameter hypotheses’, Hi – these are all separate values
of g, ranging from 0 to∞. Let us rewrite B as D, for data:

P (Hi|D) =
P (D|Hi)P (Hi)

P (D)
(452)

The first term on the right hand side, in the numerator (P (D|Hi)) is called a likelihood function. The
second term P (Hi) is called the prior, or, our former intuition of the probability of a certain parameter in
parameter space. And from our discussion before, we know that we can describe the probability of seeing
the data D, as the sum of conditional probabilities:

P (D) = ΣiP (D|Hi)P (Hi) (453)

So, we can now write

P (Hi|D) =
P (D|Hi)P (Hi)

ΣiP (D|Hi)P (Hi)
, (454)

Which is essentially a “parameter average” over the data. Integrating “away” this hypothesis in the
numerator is a process called marginalization. More on this later.

9.2 Chi-Squared Statistic and the Likelihood function
What the P (D|Hi) term is, in the numerator is essentially the likelihood of seeing our data, given our
hypothesis. Let’s take a quick example and say that we are observing some data that looks like Figure 9.2.
We can fit such data with any model we choose. In this example we will use a quadratic fit, or a model
that looks like:

f(x) = mx+ qx2 + b (455)

We can model each and every data point xi, yi as being generated from such a model with some error
term, ei which is determined by some probability distribution.

f(xi) = yi = mxi + qx2
i + b+ ei (456)

Let us isolate the error term,

ei = yi −mxi + qx2
i + b (457)

Now, suppose we assume the errors to be statistically independent – a reasonable assumption – for
their range of values to spread from −∞ → ∞ – also reasonable, as it precludes systematics. Then it
might be a good guess for us to say our error is described by a normal distribution:

ei ∼ f =
1√

2πσ2
e−

e2i
2σ2 (458)

53

where, the variance quoted above is the variance in our input, xi. The probability of measuring a single
error from our model – assuming some values m, b, q – is

P (e1|m, b, q) =
1√

2πσ2
e−

e21
2σ2 (459)

=
1√

2πσ2
e−

(y1−mx1+qx2
1+b)

2

2σ2 (460)

The probability for measuring our entire set of data then, is the product of all of these conditional
probabilities, or Likelihood’s:

P (D|m, q, b) = ΠN
i P (ei|m, b, q) (461)

=
1

(2πσ2)N/2
e−

(y1−mx1+qx2
1+b)

2

2σ2 e−
(y2−mx2+qx2

2+b)
2

2σ2 · · · (462)

· · · e−
(yN−1−mxN−1+qx2

N−1+b)
2

2σ2 e−
(yN−mxN+qx2

N+b)
2

2σ2 (463)
(464)

Taking log of this quantity to introduce some sanity, we find

log (P (D|m, q, b)) =
N

2
log(2πσ2)

N∑
i

[
yi −mxi + qx2

i + b

2σ2

]
(465)

=
N

2
log(2πσ2)

N∑
i

[
yi − f(xi)

2σ2

]
(466)

I HAVE SCREWED THIS UP!!! COME back to this...
What we have just constructed is something called the likelihood function, or, the probability of ob-

serving our data given some generative model.
The generative model had two parts: f(xi) and ei. We must be able to describe the probability distri-

bution of the error – or at least guess it. Other wise we cannot reconcile the notion of Likelihood of a list
of error values. L(D|m, q, b) often replaces log(P (D|m, q, b)) above, and we have also stumbled upon the
common definition of the χ2 statistic, which is:

χ2 =
N∑
i

[
yi − f(xi)

2σ2

]2

(467)

And so we’ve got

log (P (D|m, q, b)) =
N

2
log(2πσ2)χ2 (468)

If we want to maximize our likelihood, we had better minimize our χ2 value, which is often seen as a
metric of ”fit” for a model to data.

54

0.2 0.4 0.6 0.8 1.0
x

3

4

5

6

7
y

Figure 8: Some random data. Due to the curvature within the spread, one might like to do a least-χ2 fit for
a quadratic model– f(x) = mx+ qx2 + b

9.2.1 Estimating the Mean

The simplest example of an “estimation” of parameters, only involves estimating the mean of a sequence
of numbers. Let’s say we observe X1, X2, X3, . . . , Xn. Each of which are identical but statistically in-
dependent random variables. We “assume” a Gaussian distribution governs these random variables, with
mean µ and variance σ2 – or, what this is doing in terms of fitting to a model, we state that f(x) = µ and
f(xi) = µ+ ei, where ei is determined by a normal density – our likelihood function becomes:

P (D|µ, σ2) = P (X1, X2, . . . , Xn|X ∼ N(µ, σ2))

∼ e
(X1−µ)2

2σ2 e
(X2−µ)2

2σ2 e
(X3−µ)2

2σ2 · · · e
(Xn−µ)2

2σ2

∼ e
∑ (Xi−µ)2

2σ2

We want to maximize the likelihood function for a given ”guess” µ, so let us take the derivative with
respect to our assumed µ and set it to zero. The value of µ that satisfies this, we will call µ̂, or our ‘mean
estimator’.

logP (D|µ, σ2) ∼ −
∑ (Xi − µ)2

2σ2

∂

∂µ
logP (D|µ, σ2) ∼

∑ (Xi − µ)

σ2

0 =
∑

(Xi − µ̂)

Nµ̂ =
∑

(Xi)

µ̂ =
∑

(Xi)/N

This is our standard notion of average!!!

55

We can do the same thing for the variance, except this time we need to take into the factor outside our
sum:

log (P (D|µ, σ)) = − χ2

(2πσ2)N/2

∂

∂σ
log (P (D|µ, σ)) = − ∂

∂σ

[
1

(2πσ2)N/2

∑N
i (Xi − µ̂)2 + n(µ̂− µ)2

2σ2

]
= 0

= − ∂

∂σ

[
1

(2πσ2)N/2

∑N
i (Xi − µ̂)2 + n(µ̂− µ)2

2σ2

]

9.3 Least-χ2 with matrices
Looking once again at Figure 9.2, we can

9.4 Correlation between two random variables
Let us say that we have two random variables X and Y described by the density functions f and g that are
not statistically independent. There is some correlation. The correlation between these variables is closely
related to the convolution of their separate density functions:

Corr(x, y) =

∑N
i=1(xi − x̄)(yi − ȳ)

σxσy
(469)

Corr(x, y) =
1

σxσy

∫
(x−m1x)(y −m1y)dxdy (470)

Corr(x, y) =
1

σxσy

∫
(xy −m1yx−m1xy +m1xm1y)dxdy (471)

Corr(x, y) =
〈xy〉 − 〈x〉〈y〉

σxσy
(472)

Notice that if the expectation value of the product is equal to the product of the expectation values,
the correlation is zero and we therefore define the two random variables as being statistically independent.
(This is a very similar statement to our non-intersecting sample spaces from before).

P (x|y) =
P (x ∩ y)

P (x)
(473)

Corr(x, y) = P (x ∩ y)− P (x)P (y) (474)
= (P (x|y)− P (y))P (x) (475)

9.5 Orthogonality and Mutual Independence
For two statistically independent variables x and y, we say that there is no “overlap” between the sample
spaces X and Y , or that the intersection of the sets is zero:

P (X ∩ Y) = 0 (476)

This means that the joint probability, which is the probability associated with the union of the two
sample spaces X and Y , P (X ∪ Y), is the product of the probabilities:

56

P (X ∪ Y) = P (X)P (Y) (477)

This is a common property of statistically independent measurements – and the construction of Gaus-
sian distributions. We can expand this out using set operations,

P (X ∪ Y) = P (X)P (Y) + P (X ∩ Y) (478)

Or that, for statistically correlated observables x and y, we would expect to see joint probability P (X∩
Y) higher than the product of the separate probabilities. But what does this mean in terms of our integral
expressions earlier?

9.6 Estimator of Covariance
Working with results from last time, on the central limit theorem, we see that we can describe a Probability
density function by it’s fourier transform, the characteristic function

P (x) =
1

(2π)d/2

∫
ddkeik·x−ik·c1−k·c2·k+... (479)

Where, for now, I will ignore higher order terms corresponding to non-gaussianity. If we zero about
the mean – absorbing our first cumulant, c1 into x – we find that we have a simple fourier transform of a
Gaussian, which is itself a Gaussian.

P (x) =
1

(2π)d/2

∫
ddkeik·x−k·c2·k (480)

P (x) =
1

(2π)

1

|c2|
ex·c

−1
2 ·x (481)

Where c2 is the covariance matrix – rank (0,2) tensor – in k space.
If we are working with two random variables, x1, x2, we see that our k integration takes place over two

dimensions, so we are left with

P (x1, x2) =
1

2π

∫
dk1dk2e

i(k1x1+k2x2)e−
1
2(c11k2

1+2c12k1k2+c22k2
2) (482)

Notice that our characteristic function has a simple form, which we can now play with in order to
construct estimators for the correlation coefficient ρ commonly defined as

ρ =
c12

σ1σ2

(483)

Let’s take a look. First note that c11 = σ2
1 and c22 = σ2

2 . These are the second cumulants of x1 and
x2 respectively, their variance with respect to self. Re-writing our bivariate normal with these definitions,
and assuming zero mean, (or c1 = c2 = 0), we find

c−12 =

(
1
σ2

1

ρ
σ1σ2

ρ
σ1σ2

1
σ2

2

)
(484)

|c2| = σ2
1σ

2
2(1− ρ2) (485)

57

P (x1, x2) =
1

2π

1

σ1σ2

√
1− ρ2

− 1
2

(
x2
1
σ2

1
+2ρ

x1x2
σ1σ2

+
x2
2
σ2

2

)
(486)

This last, nasty equation is the typical bivariate normal seen in the literahchurr. (literature in snoot-
spell). But how the heck to get an estimator for the covariance?!?! We know that

σ2
1 = 〈x2

1〉 − 〈x1〉2 = c11 (487)

= −∂
2P

∂k2
1

|(k1,k2)=(0,0) +

(
∂P

∂k1

|(k1,k2)=(0,0)

)2

(488)

and

σ2
2 = 〈x2

2〉 − 〈x2〉2 = c22 (489)

= −∂
2P

∂k2
2

|(k1,k2)=(0,0) +

(
∂P

∂k2

|(k1,k2)=(0,0)

)2

(490)

The second term in both expansions – the first derivative of P(k) squared – is unnecessary, since we
are assuming zero mean.

Let us show this trick of differentiating the characteristic function in order to get cumulant estimators
explicitly, and then apply it to the covariance ρ

P (k1, k2) =
1

2π

∫
dx1dx2e

−i(k1x1+k2x2P (x1, x2) = e−
1
2(c11k2

1+2c12k1k2+c22k2
2) (491)

Differentiating with respect to k1 twice

∂P

∂k1

=
1

2π

∫
dx1dx2 − ix1e

−i(k1x1+k2x2P (x1, x2) = (c11k1 + c12k2) e−
1
2(c11k2

1+2c12k1k2+c22k2
2)(492)

∂2P

∂k2
1

=
1

2π

∫
dx1dx2 − x2

1e
−i(k1x1+k2x2P (x1, x2) = (c11) e−

1
2(c11k2

1+2c12k1k2+c22k2
2) (493)

and setting k1 = k2 = 0, we find

∂2P

∂k2
1

|(k1,k2)=(0,0) =
1

2π

∫
dx1dx2 − x2

1P (x1, x2) = (c11) (494)

c11 = 〈x2
1〉 (495)

Now for the covariance, we can take the derivative with respect to k1, then k2, to get,

58

∂P

∂k1

=
1

2π

∫
dx1dx2 − ix1e

−i(k1x1+k2x2P (x1, x2) = (c11k1 + c12k2) e−
1
2(c11k2

1+2c12k1k2+c22k2
2)

∂2P

∂k1∂k2

=
1

2π

∫
dx1dx2 − x1x2e

−i(k1x1+k2x2P (x1, x2) = (c12) e−
1
2(c11k2

1+2c12k1k2+c22k2
2)

∂2P

∂k1∂k2

|(k1,k2)=(0,0) =
1

2π

∫
dx1dx2 − x1x2P (x1, x2) = c12

c12 = 〈x1x2〉
ρ =

c12

σ1σ2

ρ =
〈x1x2〉

(〈x2
1〉〈x2

2〉)
1/2

And voila! We have found the estimator – without taking into account bias – of the correlation coeffi-
cient!

Part III

Machine Learning and Handy Tricks
10 Cumulants of the Sample Mean
Let a random variable X be drawn from some probability distribution, X ∼ P (x). Then, the sum of N
i.i.d. samples, or realizations is drawn from:

P (sN =
N∑
n=1

xn) = (P ∗ P ∗ P · · ·P)(sN) (496)

=

∫
dkeiksNφ(k)N =

∫
dkeiksn+N log φ(k) (497)

=

∫
dkeiksN+Nψ(k) (498)

This means that the equivalent cumulants for the sample mean – which is simply sN
N

– are:

x̄ =
N∑
n

xn
N

(499)

〈x̄k〉c =
1

Nk
〈

(∑
n

xn

)k

〉c (500)

Expanding out the term inside the brackets using the multinomial theorem, we get:

〈x̄k〉c =
1

Nk
〈
∑
~k

k!

k1!k2! · kN !

N∏
n=1

xknn 〉c (501)

=
1

Nk

∑
~k

(
k

k1 · · · kN

)
〈
N∏
n=1

xknn 〉c (502)

59

any dependence between the samples xn yields this expression nontrivial, but if we assume i.i.d. we
just get:

〈x̄k〉c =
1

Nk−1
〈xk〉c (503)

Where the term in the RHS brackets is just a single realization of our random variable x. Why is
this important? Because it tells us that the variance, which is the k = 2 cumulant, scales as 1

N
, and the

skewness, which is defined as:

skew =
〈x̄3〉c

(〈x̄2〉c)3/2
∼ 1√

N
(504)

scales as one over square root N . This means that our distribution on the mean collapses to a Gaussian
at least as fast as 1√

N
, given some initial asymmetry in the distribution of x. (If we have symmetry, things

are even better and we need only worry about the kurtosis, which goes like 1
N

.)
Such considerations are important when you ask yourself: at what point can I consider the estimator

of the mean to be drawn from a Gaussian? How does my approximation scale with sample size? These
are very important questions in the real world, and it nice to have a sense of what’s holding you back from
being exact – namely, that 1√

N
for skewness, which goes along with a hermite polynomial, and 1

N
, which

goes with another.)

11 Chernoff Bound
Let’s say we are trying to estimate the base rates of some classes C = {1, 2, 3 . . . K}. After polling N
people, each of which will elect one of theses classes, how confident are we in our results, P (c)? The first
step to answering this question is to simplify the problem and treat it as a sequence of binomials.

Let us at first restrict ourself to two classes. c = 1 means “no” or “Democrat” and c = 0 means “yes”,
or “Republican”. If weuse a bernouli random variable X = 0, 1 to represent a single “vote” we get

P (X|p) = pIx=1(1− p)Ix 6=1 (505)
q = 1− p (506)

Where I is the indicator function. The expectation of this distribution is:

〈X〉 = p (507)
〈X2〉c = Var(X) = pq (508)

Given these first two cumulants, we can write the Markov bound:

P (X > a) ≤ 〈X〉
a

(509)

≤ p
a

(510)

and the improved Chebyshev bound:

P (|X − p| ≥ mpq) ≤ pq

mpq
=

1

m
(511)

60

Similarly, for a binomial random variable, a sequence of votes:

XN =
N∑
i=1

Xi (512)

XN ∼
(

N
XN

)
pXN (1− p)XN (513)

we get expectation and variance

〈XN〉 = Np (514)
〈X2

N〉c = Var(X) = Npq (515)

So our bound becomes

P (|XN −Np| ≥ mNpq) ≤ 1

m
(516)

But that seems repetitive. Let’s define a new statistic, the estimator of the mean:

µ̂N =
XN

N
=

∑N
i=1

N
(517)

〈µ̂N〉 = p (518)

〈µ̂2
N〉 =

pq

N
(519)

Now we have an inequality that scales with the number of votes, or the survey size, N :

P (|XN

N
− p| ≥ a) ≤ pq

Na2
(520)

More generally the estimator of any mean, can be written

P (|XN

N
− µ| ≥ ε) =

σ2

Nε2
(521)

So, we can now make a few helpful statements. Our confidence that the estimator of the mean is within
plus or minus ε of the true value is precisely 1 − P (|XN

N
− µ| ≥ ε), for a “survey” of N participants. So

let’s see how accuracy ε scales with survey size and confidence. Writing confidence as:

confidence = 1− δ = 1− P (|XN

N
− µ| ≥ ε) (522)

δ ≤ σ2

Nε2
(523)

ε ≤ σ√
Nδ

(524)

So we that accuracy scales like one over square root survey size, and that if we want to be twice as
confident with a given accuracy, we’d better poll twice as many people. Sometimes in the real world, this
implies a cost – at least in terms of time! – and so we’d like to do even better, if at all possible.

61

It turns out we can do much, much better by using something called the Chernoff Bound, which
assumes not only pair-wise independence between our random votes Xi – as we assumed by writing
Var(XN

N
) = σ2

N
– but independence across all the variables, for all possible combinations.

How do we do this? Re-write the markov bound with some free parameter:

P (x ≥ a) = P (esx ≥ eas) ≤ 〈e
sx〉
esa

(525)

We see that the numerator is simply the moment generating function, evaluated at s. If we want to
swap the inequality, we just send s→ −s:

P (x ≤ a) = P (e−sx ≥ e−as) ≤ 〈e
−sx〉
e−sa

(526)

For our bernouli distribution on a single “vote”, we have:

M(s) = 〈esX1〉 =
∑
X

esXP (X) (527)

= esp+ 1− p (528)
M(s) = p(es − 1) + 1 (529)

Now, if we write down the moment generating function of the sum, we find, if the Xi’s are all inde-
pendent:

〈esXN 〉 = es
∑
iXi (530)

= 〈
N∏
i=1

esXi〉 (531)

MN(s) = M(s)N (532)
= (1 + p(esN − 1))N (533)

Recall that we want to bound the probability of our random variables XN being outside some range,
so we want to minimize the right handside of this equation:

P (XN ≥ a) = MN(s)e−sa (534)

Minimizing this equation is the same is minimizing the log, since both sides are positive definite:

logP (XN ≥ a) = N log (1 + p(esN − 1))− sa (535)

Taking the derivative with respect to s and setting things equal to zero, we get:

s = log

(
a

Np

)
(536)

Which, for arbitary mean, is the same thing as saying

s = log

(
a

µ

)
(537)

62

So now let’s choose a = µ(1 + θ), so that θ is our fractional accuracy relative to the variable and
s = log(1 + δ). Putting this into our equation gives:

logP (X ≥ µ(1 + θ) ≤ µ (θ − (1 + θ) log(1 + θ)) (538)

P (X ≥ µ(1 + θ) ≤
(

eθ

(1 + θ)1+θ

)µ
(539)

But, we could have taylor expanded the logarithm above, to get:

logP (X ≥ µ(1 + θ) ≤ µ (θ − (1 + θ) log(1 + θ)) ≤ µ(−θ2/3)

P (X ≥ µ(1 + θ) ≤ e−θ
2µ/3

So this is the upper bound. What about the lower? We just send s→ −s to get

P (X ≤ µ(1− θ) ≤ e−θ
2µ/2 (540)

So the lower bound, with the same taylor expansion, does slightly better! We can now make a double
sided bound:

P (|X − µ| ≥ µθ) ≤ 2e−θ
2µ/3 (541)

If we specify, once again 1− δ = 1− P (|X − µ| ≥ µθ) as our survey confidence, we can write

P (|XN − pN | ≥ Npθ) ≤ 2e−θ
2Np/3

Let θ = ε
p

P (|XN − pN | ≥ Nε) = P (|XN

N
− p| ≥ ε) ≤ 2e−

Nε2

3p (542)

Now for a few tricks,

δ = P (|XN

N
− p| ≥ ε) (543)

δ ≤ 2e−
Nε2

3p ≤ 2e−
Nε2

3 (544)

eNε
2/3 ≥ 2

δ
(545)

N ≥ 3

ε2
log(

2

δ
) (546)

This result is known as the sampling theorem. In order to constrain our underlying “base rate” to
p = XN/N ± ε with confidence 1− δ, we need to poll AT LEAST N people. This is an extremely useful
result, and has much better scaling properties than the Chebyshev bound, which would suggest:

N ≥ 1

δ

σ2

ε2
(547)

63

We see that we pay just as heavily for accuracy ε but much more heavily for confidence δ. We would
like to make δ as small as possible, and so if we taylor expand both expressions, and call R = 1 − δ
confidence, we find:

Chebyshev : N ∼ 3R
1

ε2
(548)

Chernoff : N ∼ 3 log(2R)
1

ε2
(549)

The latter CH is superior – logarithmic scaling in confidence rather than linear!
Such considerations are important, because often we are interested in constraining the maximum error

of many different random variables – say, K class base rates, P (c) = pc – with the same accuracy ε. This
can be accomplished by the union bound:

P (X1 ∪X2 ∪X3 · · ·XN) ≤
N∑
i=1

P (Xi) (550)

So that, if we want to write the probability that any of our mean base rate estimates, for some “poll”
with K possibilities is incorrect by a factor greater than ε, we can write:

P (|µ̂N1 − p1| ≥ ε ∪ |µ̂N2 − p2| ≥ ε ∪ . . . |µ̂NK − pK | ≥ ε) ≤
K∑
c=1

P (|µ̂Nc − pc| ≥ ε)

δ ≤
K∑
c=1

δc

Assuming the same confidence for every independent class bound, we get:

δ ≤
K∑
c=1

δc ≤ 2Ke−θ
2µ/3 (551)

which implies:

N ≥ 3

ε2
log(

2K

δ
) (552)

So to bound the maximum of K different statistics, or base rates with the same accuracy ε, with some
confidence δ, we essentially send δ → Kδ from a single binomial test; and, since the Chernoff scales
logarithmically, this is not such a big deal!

12 Logistic Regression and Naive Bayes Classifier
Let’s say that we see some features in a dataset, X = {~x} along with categorical variables, {c}, which
we’ll call a “class”. This class could be male/female, the features could be, say, height, weight, favorite
ice cream, etc. Normally in classification problems, we are interested in predicting c given ~x. Or more
accurately the conditional probability P (c|~x). How do we go about this?

Well, there are two ways to approach the problem. One is called discriminative, the other generativ –
they just correspond to breaking down the joint distribution of class and features, P (c, ~x) differently. Let’s
look at the following picture, which in machine learning is called a directed acyclic graph, or DAG:

64

Figure 9: A generative model

The arrows represent “cause”, in the sense that x1, x2, . . . xn all are independent, given c. A DAG in
machine learning informs the structure of the joint probability distribution on P (c, ~x). We can write from
that picture, by chain rule:

P (c, ~x) = P (c)P (x1|c)P (x2|c) · · ·P (xn|c) (553)

So we see that the class-conditional distribution is given by:

P (~x|c) =)P (x1|c)P (x2|c) · · ·P (xn|c) (554)

The “product of the marginals”. This type of framework is called common cause. We have a common
cause to all of our features, which is tantamount to saying that the variables x1 . . . xn have no interde-
pendence once we know the class. Such a framework can be used to get the object we are interested in,
P (c|~x), by using Bayes rule:

P (c|~x) =
P (c)P (~x|c)

P (~x)
(555)

=
P (c)

∏n
i=1 P (xi|c)∑

c′ P (c′)
∏n

i=1 P (xi|c′)
(556)

When trying to figure out which class our data point belongs in, given some features, we simply choose
the maximum of the numerator:

guess = argmaxc

(
P (c)

n∏
i=1

P (xi|c)

)
(557)

This is called the Naive Bayes classifier, and stems exactly from the DAG we wrote down before.
Now, that’s all well and good, Naive Bayes has some nice computational properties in that it can be
learned/updated continuously, but what if we reversed the arrows on our DAG, above? Then we would
have what’s called a common effect framework, for which, even if we have the same structure of our joint
distribution, we find that conditioning on class INDUCES correlation between the features xi. One can
see this by just looking at two features. We have:

P (x1, x2, c) = P (c|x1, x2)P (x1)P (x2) (558)

conditioning on class we get a probability that cannot be factorized or separated in x1, x2:

65

P (x1, x2|c) =
P (c|x1, x2)P (x1)P (x2)∫

dx1dx2P (c|x1, x2)P (x1)P (x2)
(559)

This expression is typical of a “common effect” model, where conditioning on class induces effects
between the likelihood of different features. I won’t get too much into this now, but in the common cause
graph we could write:

xi ⊥ xj|c ∀ i 6= j (560)

Or “class conditional independence” between features. For the common effect, we cannot write such
a thing. The common effect framework is often called “explaining away”, but I won’t get into that either.
The point is, we can relate the Naive Bayes classifier, a generative framework, directly to the discriminative
or logistic classificier, which has the same DAG structure but with the arrows reversed. We write:

P (~x|c) ∼
n∏
i=1

P (xi|c) (561)

and, for probability distributions in the exponential family we can simply write this as:

P (~x|c, θ) = exp (θc · x− Z(c))h(x) (562)

Where Z(c) is the class partition function, written as:

Z(c) = log

(∫
dxeθc·xh(x)

)
(563)

A physicist might look at this and notice that the log sum integral function is eerily reminiscent of the
Free energy F . But more on that later. It turns out that the maximum likelihood parameters of θ that I
have written above, are precisely those that maximize entropy – thereby minimizing free energy – while
also satisfying data constraints on “sufficient statistics” for x, such that the empirical average is equal to
the theoretical average. One can show this by maximizing the likelihood:

L({cn,xn}Nn=1|θ) = exp

(∑
n

θc · xn −NZ(c)

)
(564)

logL({cn,xn}Nn=1|θ) =
∑
n

θc · xn −NZ(c|θ) (565)

Taking the derivative with respect to θ we see that we get:

∂L
∂θ

=
∑
n

xn
N
− ∂Z(c|θ)

∂θ
(566)

But the second term on the right is just the moment of the feature x under our distribution:

∂Z(c|θ)
∂θ

=

∫
dx
(
eθc·x−Z(c)x

)
= 〈x〉θ (567)

66

So we find that the maximum likelihood estimate θ is such that the empirical mean of the data equals
the mean under our distribution.

∂L
∂θ

= 0 ⇒
∑
n

xn
N

= 〈x〉θ (568)

Such an exponential family representation is very convenient for DAG’s, because we can write down
separable joint distributions as a sum of neighbor-wise interaction energies in our ‘Hamiltionian” :

P ∼ exp (H(~x)) ∼ exp
(∑

Hn(xn+1, xn−1, xn)
)

(569)

If we treat our sufficient statistics as simply the conditional mean:

Tc(x) = x1c=c′ (570)

where I’ve used the 1c=c′ indicator function above to restrict the mean to each class separately, we get
linear discriminant logistic regression, or the softmax function:

P (c|~x) = P (c)P (~x|c)/P (~x) (571)

=
exp (θ · Tc(x)− Z(c))h(x)P (c)∑
c′ exp (θ · Tc(x)− Z(c′))h(x)P (c′)

(572)

=
exp (θ · Tc(x))∑
c′ exp (θ · Tc′(x))

(573)

As we change the form of our sufficient statistics T (~x), one can see that we change the shape of our
decision boundary. This framework is the discriminative one, which has distinct advantages in that it
implicitly takes into account interdependence/correlation of the feature ~x. Andrew Ng calls Naive Bayes
and Logistic Regression a discriminative-generative pair.

13 Learning Theory
After a somewhat embarrassing moment on Kaggle.com, where I blatantly overfit a training set X with a
boosted decision tree – XGboost – and then got a horrible, horrible, generalized result, I thought it’d be
time to consider model complexity and learning theory, and in general the debate that has been bubbling
beneath the Machine Learning and Statistics community.

Recently, there has been a lot of success using highly flexible models, such as boosted regressors,
classifiers, decisions trees, random forests, etc. to model very complex data sets. (One should lump neural
networks in here, too, since they perform highly non-trivial, non-linear transformation to inputs.) Leo
Breiman wrote a very interesting paper in 2001 called ”Statistical Modeling: The two Cultures” which
highlights – and insults – the attachment of old school statisticians to generative models, where the data
observed is characterized/explained as being generated by some ”process”. For instance, we say that the
obesity in the United States is generated by a linear superposition of many factors, say income, age, sex,
etc.:

obsesity = f(x) =
∑
n

θnxn (574)

67

Which is of course a very stupid assumption, since we know there are non-linear interactions between
these features of a person, that create complex results. More flexible models can capture this, by multi-
plying the different features in some polynomial. Say for instance, we add all quadratic – second order –
terms:

f(x) = θ · x + x · A · x (575)

Where A is some feature mixing matrix. There are way more parameters in our model now, and some
will prove to be important, while others will not. These days, the most old school statisticians – it seems
to me – expand features as polynomials, like above, and then use methods to cut down on the model
complexity, getting rid of combinations and or linear features that are not deterministic of our outcome.
This is all well and good. One can use the precise framework of p−values and hypotheses tests, etc. to
characterize fit, but Leo Breiman says that by using such methods – and I don’t pretend to have exhausted
all such models he pointed a finger at, or properly explained them – we really limit ourselves. Essentially,
the gist is that if we get away from this generative framework and look more towards flexible algorithms,
such as Random forests and boosted decision trees, we can have greater predictive power in the real world.

If Kaggle competitions are treated as valid evidence, this is certainly true, since virtually every winner
of these competitions – outside computer vision – has used gradient boosted decision trees or Random
forests explicitly for their solution or as part of a larger ensemble of models. The trouble is, how do
we tune these models to not overfit? How do we interpret and regularize them? Constraining a linear
or logistic regression to have small weights with a quadratic penalty term is essentially the same thing
imposing entropy, or some simplicity measure on the model (which turns out to be a Gaussian prior); but
for trees and forests, how does one characterize the degrees of freedom? This is the trouble I had over the
weekend, trying to fit a very complex algorithm that I didn’t understand to a dataset and then getting burned
for it. The nice thing about Logistic Regression is that those linear weights θ can be read as importance
values – when taking the absolute value: they tell you how much each feature – which, hopefully has been
properly scaled – contributes to a decision, or pushing towards a decision in feature space x. (I’ve talked
about this before.) Trees are much harder, and although the choice of split in classification problems,
based on the gini index or information gain are useful, they are only a piece of the story. The first split
of a decision tree can be viewed as the most important feature of course, but one clever comment I read
in an AI book is that pruning trees is much better than limiting their depth, as what often happens, for
instance with and XOR classification problem, is you split on x1, getting not so great results, but then the
following split on x2 is highly deterministic, implying that the operator x1 AND x2 is a very important
feature, which would have been missed had the tree not been able to “grow”. Clever as this comment is
when it comes to training and making practical decisions when using Decision trees, it also highlights the
fact that feature importance in a Decision tree can be LATENT, or, difficult to comprehend. Sometimes
the logical conjunction of features or splits is what’s important, and that will not show up so easily to the
eye when looking at a decision tree.

So, just for fun and practice with the Hoeffding, Chernoff inequalities, and the Union bound, let’s take
a look at some elementary learning theory (I’m lifting this directly from Andrew Ng’s notes at Stanford).
Say we are in binary classification problem, where are data is a sequence of features x and corresponding
classes y:

D = = {xn, yn}Nn=1 (576)

We would like to estimate our generalization error – which is just a specific type of loss function that
we’re going to treat as a conditional random variable:

ε(h(x)) = 1h(x)6=y (577)

68

Where 1 is the indication function. The expectation value of the generalization error is characterized
by a probability distribution, which we know nothing about:

ε(h(x)) ∼ P (ε(h(x))|D) (578)

But, we can estimate the mean of this distribution, given some samples in D by using the Hoeffding
bound. The greatest ε(h(x)) can be is unity for a given x, and the lowest it can be is zero. This means we
can write:

P (|ε(h(x))−
N∑
n=1

ε(h(xn))

N
| ≥ γ) ≤ 2e−2Nγ2

(579)

where the nasty term in the argument of our probability distribution is just the mean of our errors,
what’s called the Empirical risk:

ε̂(h(x)) =
N∑
n=1

ε(h(xn))

N
(580)

Writing this a bit more simply, then, this is really just the standard problem of estimating the mean of a
binomial distribution, for example – but we haven’t specificied the PDF, only that all of the samples xn, yn
are i.i.d!

P (|ε(h(x))− ε̂(h(x))| ≥ γ) ≤ 2e−2Nγ2

(581)

We can see that as N → ∞ – an infinite training set – we are going to be spot on: our training error
ε̂ will be precisely the same as our generalization error ε. But, recall that when fitting models, h(x) is
actually parametrized by some θ. So what we are really worried about is the probability that ANY of our
models’ train set error, ε̂(hθ(x)) deviate far from their generalization error. For such a thing we use the
union bound:

P (A ∪B ∪ C . . .) ≤ P (A) + P (B) + P (C) + . . . (582)

Now, to make life simpler, let’s say our model space is discrete, and we really only have a choice of K
θs. Then we’ve got:

P (∪Kk=1|ε(hk(x))− ε̂(hk(x))| ≥ γ) ≤ 2Ke2Nγ2

(583)

So, as we’ve seen before. Things aren’t that much worse. Let’s write the probability that our training
error is more than γ different from our generalization error as δ, and then we can state:

γ ≤
√

log(2K/δ)

2N
(584)

N ≥ 1

2γ2
log

(
2K

δ

)
(585)

What do these two statements mean? The first that our estimation of generalization error gets tighter
as N gets large. More specifically, it scales at worst like 1√

N
, just Monte Carlo Models. We also see that

69

accuracy goes logarithmic with confidence, which is just a remnant of usual Hoeffding/Chernoff bound
statements. In the second line, we see that the requisite number of Training examples, for some given
confidence δ and accuracy on empirical risk γ, goes logarithmic with the degrees of freedom. A priori,
this seams very nice, but let’s develop things further.

When we’re given a training set, we’re not gauranteed to fit the optimal model, but we know our
empirical risk estimate is at most 2γ away the OPTIMAL empirical risk. Let’s show this. First, call our
fitted model hθ̂, and the optimal one hθ∗ . We have, from the above Hoeffding/Chernoff inequality, for a
single fitted model:

ε(hθ̂) ≤ ε̂(hθ̂) + γ (586)

This is just comparing generalization risk to training risk. Now let’s compare to the optimal, by noting
that, if we fit to the wrong model, ε̂(hθ̂) ≤ ε̂(hθ∗) – otherwise we would have chosen something else! Then
we can write:

ε(hθ̂) ≤ ε̂(hθ∗) + γ (587)

and, now converting the training risk to the generalization risk on the optimal model, we get:

ε(hθ̂) ≤ ε(hθ∗) + 2γ (588)

This is a very nice inequality, because what it’s basically saying is that our empirical risk is less than
the optimal fit, plus some accuracy term:

ε(hθ̂) ≤
(

min
hθ

ε(hθ(X))

)
+

√
2 log

(
2K
δ

)
N

(589)

With highly complex models, the first term on the right hand side will be quite small – low bias –
since we can fit our data almost exactly. But conversely, in such a case K becomes large and we have no
good hold on how our model will extend into the real world – high variance. How bad does this scaling
of complexity go? A rough argument from Andrew Ng’s notes is that for floating point numbers, for D
parameters, we have approximately:

K = 264D (590)

and so our inequality goes like:

ε(hθ̂) ≤
(

min
hθ

ε(hθ(X))

)
+

√
2D log

(
265

δ

)
N

(591)

and so the requisite number of training examples – for a given accuracy γ and confidence δ – goes
linearly with parameter dimension.

But this is not entirely correct. One can use something called the vapnik-chervonenkis dimension,
which I won’t get into here, maybe in a later post, to characterize the complexity of a model. This is all a
very active part of research, and it obviously is quite difficult to get a handle on how well an algorithmic
solution will generalize, once trained on a training set.

For instance, what is K for gradient boosted decision tree? How does one characterize its vapnik-
chervonenkis dimension? This question is very important if you want to fit such models to data, rather
than being a blockhead and just using Randomized Grid Search for Hyper-Parameters in python.

70

14 Bias Variance Tradeoff
After

15 DAG’s
Let’s say that we see some features in a dataset, X = {~x} along with categorical variables, {c}, which
we’ll call a “class”. This class could be male/female, the features could be, say, height, weight, favorite
ice cream, etc. Normally in classification problems, we are interested in predicting c given ~x. Or more
accurately the conditional probability P (c|~x). How do we go about this?

Well, there are two ways to approach the problem. One is called discriminative, the other generativ –
they just correspond to breaking down the joint distribution of class and features, P (c, ~x) differently. Let’s
look at the following picture, which in machine learning is called a directed acyclic graph, or DAG:

The arrows represent “cause”, in the sense that x1, x2, . . . xn all are independent, given c. A DAG in
machine learning informs the structure of the joint probability distribution on P (c, ~x). We can write from
that picture, by chain rule:

P (c, ~x) = P (c)P (x1|c)P (x2|c) · · ·P (xn|c) (592)

So we see that the class-conditional distribution is given by:

P (~x|c) =)P (x1|c)P (x2|c) · · ·P (xn|c) (593)

The “product of the marginals”. This type of framework is called common cause. We have a common
cause to all of our features, which is tantamount to saying that the variables x1 . . . xn have no interde-
pendence once we know the class. Such a framework can be used to get the object we are interested in,
P (c|~x), by using Bayes rule:

P (c|~x) =
P (c)P (~x|c)

P (~x)
(594)

=
P (c)

∏n
i=1 P (xi|c)∑

c′ P (c′)
∏n

i=1 P (xi|c′)
(595)

When trying to figure out which class our data point belongs in, given some features, we simply choose
the maximum of the numerator:

guess = argmaxc

(
P (c)

n∏
i=1

P (xi|c)

)
(596)

This is called the Naive Bayes classifier, and stems exactly from the DAG we wrote down before.
Now, that’s all well and good, Naive Bayes has some nice computational properties in that it can be
learned/updated continuously, but what if we reversed the arrows on our DAG, above? Then we would
have what’s called a common effect framework, for which, even if we have the same structure of our joint
distribution, we find that conditioning on class INDUCES CORRELATION between the features xi. One
can see this by just looking at two features. We have:

P (x1, x2, c) = P (c|x1, x2)P (x1)P (x2) (597)

71

conditioning on class we get a probability that cannot be factorized (separable in x1, x2):

P (x1, x2|c) =
P (c|x1, x2)P (x1)P (x2)∫

dx1dx2P (c|x1, x2)P (x1)P (x2)
(598)

This expression is typical of a “common effect” model, where conditioning on class induces creates
interactions between features. I won’t get too much into this now, but in the common cause – generative –
framework we could write:

xi ⊥ xj|c ∀ i 6= j (599)

Or have “class conditional independence” between features. For the common effect – or discriminative
– framework we cannot write such a thing. What we can do, however, for any DAG, is frame things through
an a PDF in the exponential family, which takes the form:

P (~x|c) = exp (θ · T (x)− Z(c))h(x) (600)

Where Z(c) is the class partition function, written as:

Z(c) = log

(∫
dxeθ·T (x)h(x)

)
(601)

A physicist might look at this and notice that the log sum exp function is eerily reminiscent of the Free
energy F , the legendre transform of entropy. It turns out that the maximum likelihood parameters of θ that
I have written above, are precisely those that maximize entropy – thereby minimizing free energy – while
also satisfying data constraints on “sufficient statistics” on x, such that the empirical average is equal to
the theoretical average. (This also has a nice connection with Lagrangian duals in convex optimization
theory, since both the free energy and entropy are convex functions, and our sufficient statistics are treated
as constraints on the resulting problem)

Such an exponential family representation is very convenient for DAG’s, because we can write down
separable joint distributions as a sum of neighbor-wise interaction energies in our ‘Hamiltionian” :

P ∼ exp (H(~x)) ∼ exp
(∑

Hn(xn+1, xn−1, xn)
)

(602)

If we treat our sufficient statistics as simply the conditional mean:

Tc(x) = x1c=c′ (603)

where I’ve used the 1c=c′ indicator function above to restrict the mean to each class separately, we get
linear discriminant logistic regression, or the softmax function:

P (c|~x) = P (c)P (~x|c)/P (~x) (604)

=
exp (θ · Tc(x)− Z(c))h(x)P (c)∑
c′ exp (θ · Tc(x)− Z(c′))h(x)P (c′)

(605)

=
exp (θ · Tc(x))∑
c′ exp (θ · Tc′(x))

(606)

As we change the form of our sufficient statistics T (~x), one can see that we change the shape of our
decision boundary. This framework is the discriminative one, which has distinct advantages in that it
implicitly takes into account interdependence/correlation of the feature ~x. Andrew Ng calls Naive Bayes
and Logistic Regression a discriminative-generative pair.

72

16 A simple note on Bias-Variance Decomposition
When one trains a model that is highly flexible, highly “articulate” on a training set, you often get a great
training score – be it AUC, accuracy, MSE, etc. But such models – as I’ve talked about before – often have
trouble generalizing to “test” sets, or, the real world. One of the easiest ways to see this is by a simple
FOIL operation on the following quantity:

Y = f(X) + ε (607)

Here X is a random variable – the independent inputs – f(X) is the generative process that creates our
object of interest Y – be it cardinal or ∈ R, and ε is drawn from some noise distribution, say a Gaussian
process with zero mean, N (0, K(X,X ′)). Let g(X) be our picked model for Y . (Normally people write
f̂(X) = g(X) but I chose g to avoid confusion.) If we take a look at the mean squared error, we get

MSE = 〈|f(X) + ε− g(X)|2〉 (608)
= 〈f(X)2〉+ 〈ε2〉+ 〈g(X)2〉 − 2〈ε〉〈f(X)〉 − 2〈ε〉〈g(X)〉 − 2〈f(X)〉〈g(X)〉 (609)

Where I’ve assumed the noise and our f, g are uncorrelated. We see the terms that are linear in ε fall
away and we can write:

MSE = 〈f(X)2〉+ 〈ε2〉+ 〈g(X)2〉 − 2〈f(X)〉〈g(X)〉 (610)

Adding and subtracting the mean of our model squared 〈g(X)〉2 we get:

MSE = 〈(f(X)− 〈g(X)〉)2〉+ Var (g(X)) + 〈ε2〉 (611)

So now, term by term, we see we have: the squared difference between our data and our average model
– the Bias, which quantifies how much our model is “off” (a quantity that will be quite low for complex
models and high for simple ones); the variance of the model itself, which quantifies how much our g(X)
changes given different training inputs (a quantity that will be high for complex models and low for simple
ones) ; and the variance of the noise variable ε, which is an ineluctable contribution to our error.

This decomposition illustrates the balancing act we have to play, as model builders, between simplicity
and goodness of fit. Refer to this decomposition – or the much harder Chernoff/Union bound from Learn-
ing theory – when explaining why your highly un-regularized gradient boosted decision tree – or boosted
anything – did a poor job of generalizing! (This doesn’t always happen, of course, just a word of caution.)

17 Importance Sampling

18 k means and the EM algorithm
One very popular and very useful algorithm that its taken me a while to get around to is something called
the Expectation-Maximization algorithm, or EM. A lot of people treat this thing as a black box, but because
I wanted to implement my own handwritten constraints in a K-means and Gaussian mixture model, I had
to sit down and read through things.

Turns out the EM algorithm is all about introducing auxiliary variables to your problem – auxiliary
data to be exact. Physicists solve things all the time by “enriching” and the integrating out, which is exactly
what EM does. Let’s say we a sequence of observations ~xi for i = 1...N , and we would like to estimate
their density. Problem is, the seem to form some awful distribution, something that would be impossible to

73

model with a Gaussian distribution or a Poisson or any “sane” thing. We could resort to non-parametrics,
such as Kernel Density estimation but another idea may be to say “Hey, I bet the first data point came from
a Gaussian distribution, but one that was centered over THERE. Let’s call it Gaussian A. And I bet the
second was drawn from the same Gaussian A. But the third, which is really far away, was drawn from an
entirely different Gaussian distribution, which we can call B . . . ” etc.

What we’re doing here is introducing “membership”, which of course has a close relation to clustering
and space segmentation, but more on that later. We now have our auxiliary variables in the problem.

~xi, ~zi (612)

For each i, ~x is the observable, living in lets say D dimensions, since each data point has D features,
while ~z is the membership. For the Gaussian mixture case ~z lives in K dimensions, where K is the number
of Gaussians – or clusters – we allow to build the space. Now it’s pretty simple to write down the log
Likelihood, but we have to think about what parameters we are conditioning on. We’ve got the mean
and variance of EACH Gaussian, let’s call them µk,Σk and we’ve also got the probability of membership
~zi, for every i, essentially its PDF. Let’s call this ~φ, which note, has K components and is in general a
multinomial for the whole data set, multinoulli for a single draw. (The attentive reader will note that I’m
taking notation directly from Andrew Ng and Kevin Murphy, who both have great notes on this).

L(X|φ, µk,Σk) = log (P (X|φ, µk,Σk)) (613)

Let’s take this a step at a time. If we assume that every data point ~xi is independent, then we can write

L(X|φ, µk,Σk) =
∑
i

log (P (~xi|φ, µk,Σk)) (614)

Now, if we want to include our auxiliary variables, we have to include them explicitly inside the log
but marginalize over them:

L(X|φ, µk,Σk) =
∑
i

log

(∑
zi

P (~xi, zi|φ, µk,Σk)

)
(615)

And now, we can use a very interesting trick. My first intuition at this point was to expand the joint
inside the log like so

L(X|φ, µk,Σk) =
∑
i

log

(∑
zi

P (~xi|µk,Σk)P (zi|φ)

)
(616)

and keep working but apparently there’s a more useful way to do things. If we divide and multiply by
some UNKNOWN PDF in zi, Q(zi) we can use Jensen’s equality to write:

L(X|φ, µk,Σk) =
∑
i

log

(∑
zi

Q(zi)
P (~xi, zi|φ, µk,Σk)

Q(zi)

)
(617)

≥
∑
i

∑
zi

Q(zi) log

(
P (~xi, zi|φ, µk,Σk)

Q(zi)

)
(618)

We can do this because log is a concave function, and for any concave function we have:

74

E [f(x)] ≤ f(E [x]) (619)

Our expectation is over zi and so now we see that our log loss is strictly greater than this somewhat
easier expression on the RHS. But, it kind of looks familiar... its the negative KL divergence between the
two distributions in zi! If we want maximize our lower bound and make it as small as possible, we need
to minimize the KL, divergence, essentially setting:

P (~xi, zi|φ, µk,Σk) = constQ(zi) ∀ zi (620)

So if we sum both sides in zi we get the marginalized distribution on the left and a constant on the
right:

∑
zi

P (~xi, zi|φ, µk,Σk) =
∑
zi

constQ(zi) (621)

P (~xi|φ, µk,Σk) = const (622)

i.e. the best candidate for Q(zi) is the conditional membership, based on the datapoint xi itself!

Q(zi) =
P (~xi, zi|φ, µk,Σk)

P (~xi|φ, µk,Σk)
(623)

= P (zi|~xi, φ, µk,Σk) (624)

So now, with this Q in hand in we have a tight lower bound on the log likelihood, which we can then
maximize in µk,Σk:

L(X|φ, µk,Σk) ≥
∑
i

∑
zi

P (zi|~xi, φ, µk,Σk) log (P (~xi|φ, µk,Σk)) (625)

The EM algorithm simply consists of the following two steps:

1. Given µk,Σk and the data X , calculate P (zi|~xi, φ, µk,Σk). (M-step)

2. Given the above, maximize w/r/t µk,Σk. (E-Step)

3. repeat

So, we are essentially calculating data point memberships – M step – and then optimizing the log
likelihood, as we always would – E step. The difference here is that we don’t set hard memberships in our
model. We let there be fractional or “soft” memberships in this likelihood expression.

In algorithms like K-means, which actually works on the same EM principle with some drastic as-
sumptions we have hard memberships, and ubuitous covariance matrices across all Gaussians – or clusters
– K.

The beautiful thing about EM, and I don’t have time to get into it now, is that it’s gauranteed to
monotonically increase the log likelihood iteration by iteration, and this is simply due to the convexity
properties we talked about earlier.

————————————————————–
One thing I was hoping to accomplish earlier was to restrict the membership in certain clusters, based

on number, or some other characteristic of the data set. This can be accomplished by fiddling with Q(zi)
and having the zi memberships no longer be independent across the dataset. Could be hard in practice
for EM, but for K-means, it simply involves a heuristic of kicking the worst-fitting member out to another
cluster. This might involve some hot-potatoe-ing. I’ll have to do some checks to see.

75

19 Facility Location as Adaptive K-Means
In linear programming, a typical problem is the following: we have N facilities, which we can choose to
open or not open, in order to serve M customers, who are strewn throughout the world. We would like to
minimize the operational cost of serving our customers from these facilities, which can be summarized as:

startup costs =
∑
f

sfyf (626)

yf = 0, 1 (627)

Where yf is a binary variable – zero or one – based on whether we choose to open facility f . sf is
obviously the associated cost for opening that specific facility. We also have transit costs from serving our
customers, which might be of the very simple form:

transit costs =
∑
c

∑
f

XcfD(xc,xf) (628)

Xcf = 0, 1 (629)

Where Xcf is a binary matrix that denotes whether customer c was assigned to facility f . D(x1, x2),
is our distance metric, which could be Euclidean or ”Manhattan” – where we only take steps to the left or
right, up or down, no diagonal lines between destinations – or maybe just a query in google maps.

Adding these to costs together we get a loss function of sorts:

J =
∑
c

∑
f

XcfD(xc,xf) +
∑
f

sfyf (630)

which we would like to minimize. There are some simple constraints on our binary variables that we
can articulate mathematically. Say each facility has an associated production capacity cf and each cus-
tomer has an associated demand dc. Then we have to make sure that the assignments are not overworking
our facilities:

∑
c

Xcf ≤ cfyf ∀ f (631)

Notice I’ve multiplied by yf on the RHS. Another constraint we need to have is that every customer is
served by exactly one facility – no redundancy:

∑
f

Xcf = 1 ∀ c (632)

We can also require more explicitly that facilities who are turned off do not get any assignments:

Xcf ≤ yf ∀ c, f (633)

That’s a ton of constraints, but each of them are linear and so we have well defined linear program.
Given N facility locations and M customer locations, with the associated capacities, demands, and start
up costs, we can find the global optimum of this thing with N(M + 1) decision variables, X and y.

76

Turns out this problem is very similar to K means. Because what we are essentially doing is breaking
down our customers into ”facility clusters”. What if we promoted all customers to facilities themselves?
(Or at least gave them the option). Then the distance function D(x1,x2) is simply the square root of the
L2 norm associated with a mixture of Gaussians with a diagonal covariance matrix. Let x2 be the facility,
or centroid of the kth cluster, then we have:

Let x2 = µk (634)
Σ = 1 (635)

Then D(x1,x1) =
√

(x1 − µ̃k) Σ−1 (x1 − µ̃k) (636)

For a mixture of Gaussians density Estimation, our PDF is:

P (x) =
K∑
k=1

N (µk,Σ) (637)

and the log likelihood for our sequence of customers/facilities is:

− logL(X|{µ}Kk=1) =
∑
k

∑
n∈ck

(xn − µk)2

2σ2
+K
√

2πσ2 (638)

I’ve kept the σ2 terms for clarity. Notice that the second term in this negative log likelihood, or loss
function is the normalization factor: it penalizes a high level of total clusters K, preventing overfitting.
This loss function – apart from the quadratic nature of the summand – is exactly like the objective in our
facility location problem. The startup cost for every ”facility” in this example would be

sf =
√

2πσ2 ∀f (639)

And the variance of our gaussians we would set to unity: σ → 1. Let’s rewrite the negative log
likelihood, but in decision variable language:

J ′ =
1

2

∑
i

∑
j

XijD(xi,xj)
2 +

∑
j

sjyj (640)

si =
√

2π (641)
(642)

We have not yet specified the capacity of our clusters or the ”demand” of each data point. A simple
choice would be to set some upper limit on the size of each cluster, and give every data point the same
weight or demand:

di = 1 ∀ i (643)
cj = cmax ∀ j (644)

This is still a linear program, just with a slightly different list of coefficients on the first term! To solve
such a system we would needN(N+1) decision variables, which could be prohibitive with large systems,
but thanks to interior point solvers and very clever routines for integer programming we can actually run
this ”adaptive” K-means algorithm in polynomial time!

77

20 Stratified Sampling
Let’s say you want to estimate how “fair” a coin is. What do you do? Probably flip the coin many times
and measure the average heads vs. tails rate. In statistical speak, what you’re doing is calculating the
sample mean:

p̂ =
N∑
i=1

xi
N

(645)

Which is the maximum likelihood estimate of “heads” probability p. Note that above xi = 0, 1,
and so we are just summing up the total number of heads and dividing by the total number of flips.
Pretty straightforward. Granted, the true value of p might be different from our estimator p̂, and we can
characterize this “experiment” variance by the variance of the estimator:

Var(p̂) =
p(1− p)

N
(646)

Looking at the equation above, you can see that as the number of flipsN →∞, we have zero variance,
and thus are “infinitely” sure of our probability p̂ = p. No error bars. This is called the law of large
numbers, and is essentially why larger surveys are more robust.

Now that’s all well and good, but it turns out you can do a bit better than this simple sample mean, by
doing something called stratification. Take for example, K different people, all flipping the same type of
coin a total of N times. If we take the sample mean of each person and add them up, we get a different
estimator:

p̂strat =
∑
k

wkp̂k =
∑
k

wk

(
nk∑
i=1

xik
nk

)
(647)

Where the nk is the number of coin flips for the kth person, and we require
∑

k nk = N , to compare
with our estimator from before. It turns out that if we choose the weights proportional to the number of
flips:

wk =
nk
N

(648)

we get algebraically the same thing as our sample mean above, but the statistical properties are differ-
ent, because our variance now becomes

Var(p̂strat) =
∑
k

w2
k

σ2
k

nk
(649)

Notice that now we have a weighted sum of in-person variances, which, if we assume to all be the
same, we get:

Var(p̂strat) =
∑
k

w2
k

p(1− p)
nk

(650)

=
∑
k

n2
k

N2

p(1− p)
nk

(651)

=
∑
k

nk
N2

p(1− p) (652)

=
p(1− p)

N
(653)

78

The same variance that we got before! So how did this help at all? Well, the key is that if one part of
our sample – which in this case is a set of people flipping coins – had a lower variance, we would have a
tighter estimate on p. A good way to explain this is to just look carefully at the sum:

Var(p̂strat) =
∑
k

w2
k

nk
σ2
k (654)

When one of our terms σ2
k is very small, we reduce our total variance. There is a tradeoff between

in-strata sample size nk and in-strata variance σ2
k. To control the total variance of our estimator, we should

where m and c are binary variables. One way to estimate this probability is to take a random sampling
of people from the population with a cancer

Where the true value of µ – note that this is different than our estimate µ̂ – is the probability that a
single flip yields heads. The variance of our estimate on µ is

Var(µ̂) = (655)

21 Fisher’s Exact Test
Let’s say you are asked to solve a binary classification problem (y = 0, 1) with very few training examples
(N < 1000) and quite a few, possibly predictive features (d > 1000). The standard question of ”how the
heck do I feature select?” becomes very relevant, and in particular, ”how the heck do I feature select with
so few training examples?!?”.

For Categorical features, one of the best ways to test for significance – i.e. a non-null relationship
between a feature column and a label column – is Fisher’s exact test and Laplace-smoothed lift.

Fisher’s exact test is a combinatoric way of examining a contingency (or pivot) table. Let’s say we
have two columns x and y, which both take on, in the simplest case, only two values: true and false. If we
were to make pivot table, we’d have the number of pair-wise events in a 2x2 grid.

pivot(x, y) =

(
n00 n01

n10 n11

)
(656)

Where n11 corresponds to the number of times x and y were both True, n00 corresponds to the number
of times x and y were both false, n10 the number times x was true and y false, etc. (This can be done easily
in pandas by writing something like pandas.pivot(dataFrame,index=x,columns=y,aggFunc=len,fillna=0).)

We can see that the sum of the entries n11 + n01 + n10 + n00 = N equals the number of training
examples, and that the sum over rows or columns equals the marginal counts. n11 + n10 = R1 equals the
number times x was true; n01 + n11 = C1 equals the number times y was true; n01 + n00 = R0 equals the
number times x was false, etc.

What fisher proposed is to take this matrix and ask, given the marginal counts, R0, R1, C0, C1 – which,
if you think about it, correspond to the prior probabilities on x and y: P (x) = R1

N
, P (y) = C1

N
– how likely

is the resulting contingency matrix if x and y are independent?
The most naive way to answer that question is to take the prior probabilities on x and y that’s given

two us by the data:

P (x) = p =
R1

N
(657)

P (y) = q =
C1

N
(658)

79

and quote our good old multinomial:

P (n) =
N !

n00! n10! n11! n01!
[pq]n11 [p(1− q)]n10 [(1− p)q]n01 [(1− p)(1− q)]n00 (659)

which, can be simplified to:

P (n) =
N !

n00! n10! n11! n01!
(p)n10+n11(1− p)n00+n01(q)n11+n01(1− q)n10+n00 (660)

The probability distribution above assumes that there is no relationship between x and y, and so, if we see
a contingency table that is very unlikely given the above pdf, we know something is up! But, how sure
are we that the prior distribution estimates, p, q are correct? Our sample size N was very small. That’s a
troubling question, which can be solved by Laplace Smoothing, which sets a uniform prior distribution on
P (x) and P (y):

P (x) = p =
R1 + α

N + αdx
(661)

where dx is the number of distinct values x can take on – in this case two. And similarly, for y we’d have
the prior:

P (y) = q =
C1 + α

N + αdy
(662)

This helps things a little bit, where α is the hyper parameter between 0 and 1 that controls the “strength”
of our uniform prior. But one also might worry if using a multinomial is even appropriate, given, for very
few datapoints N , the highly discrete nature of our contingency table.

Fisher’s exact test explicitly addresses this discreteness aspect through combinatorics.
Let’s recall an experiment where one has a drunken man throw N darts at a dartboard with d cells)

the number of different ways in which this drunken dart player can get n1 darts in the first cell n2 in the
second, n3 in the third, etc. is:

W =
N !

n1!n2! · · ·nd!
(663)

Taking the log of this combinatoric factor and applying stirling’s approximation, we get the Shannon
entropy:

logW = −
d∑
i=1

pi log pi (664)

pi =
ni
N

(665)

This is all very interesting because, if one looks at the contingency table above, we need only promote
our counts n00, n01, n10, n11 to a compound index: n1, n2, n3, n4 and we get the same formula:

W =
N !

n00!n01!n10!n11!
(666)

80

This is the number of ways one can get a contingency table with the counts nij . But, this is NOT a
probability. It is simply a multiplicity count of some ”state” in phase space, nij . (You’ll see above that it’s
a normalization factor for the multinomial). If we want to convert this multiplicity count to a probability,
we have to be like Kolgomorov and divide by the multiplicity of the entire sample space Ω. After all,

P (x ∈ X) =
|X|
|Ω|

(667)

Where I’m using bars for “multiplicity”, or the count of phase space cells within some region.
For our contingency table, above, we can define precisely what that is: all contingency tables with the

marginal sums R0, R1 and C0, C1. This can be written as compound combinatoric factor:

|Ω| =

(
N
C0

)(
N
R0

)
(668)

=
N !N !

R0!R1!C0!C1!
(669)

And so we have, doing our division:

P (n00, n01, n10, n11|R1, R0, C1, C0) =
R0!R1!C0!C1!

N !n00!n01!n10!n11!
(670)

Let the joint event n00, n01, n10, n11 be specified by n. Then we can write

P (n|R,C) =
R0!R1!C0!C1!

N !n00!n01!n10!n11!
(671)

or, more generally, for non-binary categorical variables (check it!):

P (n|R,C) =

∏dx
i=1Ri!

∏dy
j=1Cj!

N !
∏

i,j nij!
(672)

This is a very interesting formula, because it gives the precise, discrete probability of seeing some
contingency table, conforming to marginal counts R and C. With a little bit of algebra, one will see that
this combinatoric probability converges to the multinomial we quoted above, by noting:

lim
N→∞

N ! ≈
(
N

e

)N
(673)

and so we get:

P (n00, n01, n10, n11|R1, R0, C1, C0) ≈
(R0

e
)R0(R1

e
)R1(C0

e
)C0(C1

e
)C1

(N/e)N(n00

e
)n00(n01

e
)n01(n10

e
)n10(n11

e
)n11

(674)

All the factors of e cancel out, and we can simplify to get:

81

pq =
n11

N
(675)

p(1− q) =
n10

N
(676)

(1− p)q =
n01

N
(677)

(1− p)(1− q) =
n00

N
(678)

P (n|R,C) =
N !∏
i,j nij!

(
R0

N
)R0(

R1

N
)R1(

C0

N
)C0(

C0

N
)C0 (679)

=
N !

n00! n10! n11! n01!
(p)n10+n11(1− p)n00+n01(q)n11+n01(1− q)n10+n00 (680)

The same multinomial formula we found above!
This really isn’t so surprising, as it says the combinatoric probability converges to the multinomial

with fully continuous priors p, q in the large sample N →∞ limit, but it is interesting to note.
Now, Fisher, when quoting p-values, or significance tests for a relationship between x, y, would simply

use the count of contingency tables that had table counts n more extreme than what’s observed. For
instance, let’s say we observe a True/True x, y occurence that is higher than expected under the marginals:
n11 > Npq or n11 > R1C1/N : what’s the sum of the probabilities of tables that have an even higher
n11? This is called a one-tailed pvalue significance test, and for the fisher exact test and the multinomial
method, corresponds to a simple sum.

I won’t get too into the details of implementation now, but suffice to say, scipy’s got a fisher test
calculation all on its own!

————————
Now what hasn’t been mentioned is lift. And it relates directly to the laplace smoothed priors discussed

earlier. Lift is simply:

l(x|y) =
P (x|y)

P (x)
=

P (x, y)

P (x)P (y)
(681)

or, the probability of x taking on some value given y relative to x occurring independently. Lift is a
number between zero and infinity, and basically means: how many more times likely is x going to occur
given y? For low sample size N < 1000, it’s probably a good idea to smooth the priors P (x), P (y) giving
us:

l(x|y) =
P (x, y)

P (x)P (y)
(682)

=
(N + αdx)(N + αdy)

N

nxy
nxny

(683)

Where nx, ny is the event count of x and y. nxy is th joint event count of x, y.

22 Restricted multinoulli samples
I was asked an interesting friend the other day, about density estimation. Let’s say we’re interested in
some categorical variable X that can take on values from 1 to C. Then we can write down the PDF of a
single sample or ”trial” as a multinoulli:

82

P (X) =
C∏
c=1

θ1x=c
c (684)

Where 1 is the indicator function. If we have many realizations of this random variable X , we get a
multinomial, and can write down our pdf in terms of the total number of times X was equal to c as nc. If
we have N observations, that means:

P (~n|~θ) =
N !

n1!n2! · · ·nC !
θn1

1 θn2
2 · · · θ

nC
C (685)

where we require

∑
c

nc = N (686)∑
c

θc = 1 (687)

Note I’ve used the shorthand ~n = n1, n2, . . . nC and ~θ = θ1, θ2, . . . θC . What we’ve written above is
the likelihood of a sequence of multinoulli observations, given some categorical probability distribution ~θ.
One might ask, what’s the maximum likelihood estimate of ~θ? If we maximize our likelihood subject to
our normalization constraint on the PDF, we have

maximize P (~n|~θ) =
N !∏
c nc!

∏
c

θncc (688)

subject to
∑
c

θc = 1 (689)

Taking the log and taking a derivative with respect to θc we get:

∂

∂θc

(
logP (~n|~θ) + λ(1−

∑
c

θc)

)
= 0 (690)

∂

∂θc

(
logN !−

∑
c

log nc! +
∑
c

nc log θc + λ(1−
∑
c

θc)

)
= 0 (691)

nc
θc
− λ = 0 (692)

θc =
nc
λ

(693)

We can determine λ by summing over c:

∑
c

θc =
∑
c

nc
λ

(694)

1 =
N

λ
(695)

⇒ N = λ (696)

83

So finally, we have

θc =
nc
N

(697)

Ok, that’s all well and good, in line with our intuition. We expect X to fall into the categorical bin c
the number of times we observed it in there, normalized by our total observations!

—————————————-
Now, what if during these multinoulli trials, not all of the categorical variables – or not all of our sample

space Ω = {1, ...C} – was available? Then we’d have to change our Likelihood estimation, because a pure
count isn’t quite the right thing to do. Let’s nail down some notation. Our data is a sequence of categorical
observations

Data = {xt}Tt=1 (698)

where, at each instance t, our categorical variable comes from a subset of our sample space:

xt ∈ Ωt ⊂ Ω (699)

This meas, if we were to write down the log likelihood, we’d have something like (assuming each xt
is independent):

logP ({xt}Tt=1|~θ) =
∑
t

logP (xt ∈ Ωt|~θ) (700)

The probability inside the sum can be written as a marginalization over the bins c not included in the
sample set Ωt

P (xt ∈ Ωt|~θ) =
∑

xt 6∈ Ωt

P (xt|~θ) (701)

and so our likelihood becomes:

logP ({xt}Tt=1|~θ) =
∑
t

log

(∑
xt 6∈ Ωt

P (xt|~θ)

)
(702)

You might at the inner sum and say that all is lost, but if we group the outer sum in terms of common
sample set, we can write:

logP ({xt}Tt=1|~θ) =
∑
S⊂Ω

[∑
S=Ωt

log

(∑
xt 6∈ Ωt

P (xt|~θ)

)]
(703)

and now we see the term in brackets is just another multinomial with sample space Ωt. Converting our
observed variables xt to counts, given sample space S, we get:

logP ({xt}Tt=1|~θ) =
∑
S⊂Ω

logP (~nS|~θ) (704)

84

You might be worried that we’re summing over all possible subsets S, but we’ll get to that implemen-
tation detail in a moment. The point is, we can now write our Likelihood as:

logP ({xt}Tt=1|~θ) =
∑
S⊂Ω

(
log(NS!)−

∑
c

log(nc,S!) +
∑
c∈S

nc,S log θc

)
(705)

To clarify NS is the total number of observations we drew from the subset S, and nc,S is the count of
categorical variable c in all instances of the subset S. Adding our lagrange multipliers once again – one
for each subset – we get:

minimize
∑
S⊂Ω

(
log(NS!)−

∑
c

log(nc,S!) +
∑
c∈S

nc,S log θc

)
(706)

subject to
∑
c∈S

θc = 1 ∀S (707)

Taking the derivative once again with respect to θc we get a bunch of kronecker deltas – or depending
upon how you look at it, indicator functions – in the sums:

∂

∂θc

(∑
S⊂Ω

(
log(NS!)−

∑
c

log(nc,S!) +
∑
c∈S

nc,S log θc

)
+
∑
S

λS(1−
∑
c∈S

θc)

)
= 0 (708)∑

S⊂Ω

1c∈S
nc,S
θc
−
∑
S⊂Ω

λS1c∈S = 0 (709)

So we have:

∑
S⊂Ω

1c∈S
nc,S
θc

=
∑
S⊂Ω

λS1c∈S (710)

θc =

∑
S nnc,S1c∈S∑
S NS1c∈S

(711)

or more simply,

θc =
nc∑

S NS1c∈S
(712)

So what does this final formula mean? It means our best estimate for the probability of our categorical
bin c, given the data, is equal to the number of times we saw X = c, in general, divided by a new
numerator, which, instead of N is the number of times X HAD A CHANCE to be equal to c. Pretty
intuitive, but difficult to prove!

Now back to that comment about summing over all subsets. In reality, for most data, you’re only going
to see a finite number of subsets of your categorical sample space (although things may become a pain if
C is really large). The best way to estimate these parameters is to do a masked sum. Let the data matrix
be a binarized thing:

Xtc = 0, 1 (713)
where t = 1, . . . T, c = 1, . . . C (714)

85

where Xtc is unity if the tth observation is equal to – or falls into bin – c. Now let our mask matrix be
Mtc, which is zero if c is not in Ωt (c 6∈ Ωt) and one if it is. Then our estimates I wrote above are:

θc =
∑
t

XtcMtc (715)

which can be done in numpy pretty darn fast.

23 Label Propagation and Semi-Supervised Learning: Gaussian Ran-
dom Field Method

So, recently I’ve been reading up on label propagation in semi-supervised learning, which is when you
have a great deal of data, but most of it is unlabeled. To put some notation on things, lets say way have a
set L:

L : {x, y}Ln=1 (716)

which is a set of pairs of input vectors x and output labels y, be they scalar or categorical. And then
we have a huge unlabeled set:

U : {x, }Un=1 (717)

which we would like to infer on. Normally, this use case is motivated when the unlabeled set is much,
much larger, |L| << |U |. If we are talking about classification, one way to view this problem is through
clustering. If we assume that close vectors x, under some metric, have close labels y, we that might
motivate a loss function of the form:

E({y}) =
∑
i,j 6=i

Wij(yi − yj)2 (718)

Where, we’re summing over all pairs of data points i, j, and weighting their difference in label with
the matrix Wij . For sanity’s sake, Wij should be large when xi, xj are close. So Wij goes like one over
distance between i, j. For example:

E({y}) =
∑
i,j 6=i

Wij(yi − yj)2 (719)

Wij = e−|xi−xj |
2/2σ2

(720)

This weighting matrix is simply a function of the euclidean metric, and actually reminds one of an
RBF kernel or covariance function... Is there a connection here?

Absolutely.

If we frame our clustering/labeling problem as trying to minimize this loss function, or energy E, it
means we can actually frame the likelihood of the labels with a boltzman distribution:

P ({y}) =
1

Z
e−

∑
i,j 6=iWij(yi−yj)2

(721)

86

(Where Z is the partition function, summing over all configurations of labels). This is extremely
interesting, because if you do a little matrix algebra on our energy, we you find that one can re-write the
loss as:

E =
∑
i,j 6=i

Wij(yi − yj)2 =
∑
i,j 6=i

yi(Dij −Wij)yj (722)

=
1

2
yiLijyj (723)

Dii =
∑
j′

Wij (724)

Lij = D−W (725)

The matrix Lij , above is actually a close cousin of the laplacian operator ∇2, but we have embedded
things in a high-dimensional space because of exponentiation. Notice that our likelihood on the configu-
ration of labels now looks exactly like a Gaussian random field:

P ({y}) =
1

Z
e−yiLijyj/2 (726)

such that 〈yi〉 = 0 and 〈yiyj〉c = L−1
ij . This discrete pdf on labels is precisely the same as if we had

made everything continuous from the get-go:

E[y(x)] =
1

2

∫
dxdx′y(x)y(x′)K(x, x′) (727)

K(x, x′) = e−|x−x
′|2/2σ2

(728)

P (y(x)) =
1

Z
e−

1
2

∫
dxdx′y(x)y(x′)K(x,x′) (729)

which is a Gaussian random field on the labels, y(x), imposing an RBF correlation function between
points x. When integrate the lagrangian in by parts we would get the continuous equivalent of Lij , which
is essentially∇2 in some new space.

So why do we care about all of this? Well, it turns out that the algorithms people use to propagate
labels work exactly like the Helmholtz equation. For instance, one of the easiest things you can do given
labeled examples L, is to propagate or “flow” the y’s to unlabeled points by the following procedure:

yt+1 = D−1Wyt (730)

which, is the same as the helmholtz equation:

(
∂

∂t
+∇2

)
yt = 0 (731)

yt+1 − yt = ∇2yt (732)
yt+1 =

(
1−∇2

)
yt (733)

and now note, if we replace∇2 with 1−D−1/2WD−1/2, we get

yt+1 = D−1Wyt (734)

87

This is PRECISELY the update scheme – in discrete form – of Helmholtz dynamics. (Although we are
doing things not in euclidean space but somewhere else, do to our choice of metric. Because for instance,
we could have chosen Wij to be whatever we liked, as long as it goes inverse with distance. Let g(xi, xj)
be some metric, then we have more generally:

Wij = f [g(xi, xj)] (735)

and so g defines the space in which we’re taking derivatives. Things don’t have to be euclidean!

23.1 Markov Random Walks
Szummer and Jaakola (2002) used the exact same frame work written in the last post to propagate labels
outwards from a training set via some distance measure. But, they used a Markov random walk, with
transition matrix:

pij =
Wij∑
ikWik

(736)

= D−1W (737)

Notice, this is exactly the same as our transition matrix from before. The best way to view pij is a
conditional probability that a particle lives at position i, given that it was at position j the moment before:

pij = P (xt+1 = xi|xt = xj) (738)

Now, this is only a single step. By markov property we can extend to any number of steps in time t:

p
(2)
ij = P (xt+2 = xi|xt = xj) (739)

=
∑
xt+1

P (xt+2 = xi|xt+1 = xj)P (xt+1 = xi|xt = xj) (740)

or, in matrix form:

p
(2)
ij =

∑
k

pikpkj = p2 (741)

p
(t)
ij = pt (742)

this type of framework allows for traversal of particles through our “graph”, consisting of the labeled
and unlabeled datapoints. It is precisely the same as the Helmholtz algorithm given before, but instead of
soft labels y(x) being propagated we have representative particles.

24 Entity Resolution
So, along with label propagation, I’ve also been thinking about entity resolution, which is basically the
same thing if you frame the problem correctly.

Let’s say you have a set of all labeled data:

{xi,yi}Ni=1 (743)

88

Where yi can be a class – zero or one – as we were talking about earlier, or a unique ID. What we
would like to do is compare pair-wise our datapoints and see if the yi, yj’s are equal. This means that
every pair is a probability instance, we ’d like to assign them a “two-peas-in-a-pod” probability. One way
of doing this is with our similarity matrix, mentioned before:

P (yi = yj|xi, xj) = Wij = e−αngn(xi,xj) (744)

Where in the exponent we have a linear combination of metrics. They can be Euclidean, Minkowski,
cosine, what have you – each with a weight αn. (This is particularly useful with string comparison, as
some metrics are more informative of others). We can also use simple logistic regression:

P (yi = yj|xi, xj) = σ (−Wij) =
1

1 + eαngn(xi,xj)
(745)

(it turns out that this probability is flipped the wrong way if we kept the negative sign in the exponent,
which can be seen by a simple plot). If we want to learn the optimal αn’s we can use gradient descent on
some specified objective function. The graph based formulation is motivated by “Hidden Markov Random
Field” which penalizes different labels between close points – as specified by g.

E =
∑
i,j 6=i

Wij(yi − yj)2 =
∑
i,j 6=i

e−αngn(xi,xj)(yi − yj)2 (746)

=
∑
i,j 6=i

P (yi = yj)(yi − yj)2 (747)

E = E
(
(yi − yj)2

)
(748)

we see that this energy E is just the expectation value of the pairwise label distance, a certain type of
empirical Risk! (E can also be treated as the log loss or negative log probability of the configuration {y}).

Similarly, for logistic regression we just have our log loss. Both objective functions are differentiable
with respect to the metric weights αn, so if we want to LEARN what comparators between xi, xj are
important, we simply use gradient descent on our labeled examples! To extend labels/matches to unlabeled
points, we use the pairwise probabilities specified above.

89

25 Estimating the Survival Function
In survival analysis, the key quantity of interest is something called the survival function, S(t), which is
the probability that I’m going to live, at least as long as I’ve lived already:

S(t) = P (T ≥ t) (749)

along with something called the hazard function, which is the probability that I die today, at time t,
given that I’ve lived up until now:

λ(t) = P (T = t|T ≥ t) = P (t)/S(t) (750)

This hazard is a conditional probability, and comes about because survival analysis and survival-like
problems are implicitly sequential.

When estimating S(t) from data, one often uses the Kaplan Meier Estimator, which is a cumulative
product of the number of people who “died” at time t, dt, and the number of people who were “alive” at
time t, nt:

Ŝ(t) =
∏
t′<t

(
1− dt′

nt′

)
(751)

This is actually just a cumulative product of time-step survival probabilities, or one minus the hazard:

Ŝ(t) =
∏
t′<t

(1− λt′) (752)

=
∏
t′<t

pt′ (753)

If we were to ask ourselves, “what’s the variance of this estimator?”, we’d have to use some fancy
tricks. The first of which is noticing that we don’t have good ways of combining variances in a product,
but we do have good ways of combining variance for sums. So let’s take the log transform of our estimator:

log
(
Ŝ(t)

)
=

∑
t′<t

log (1− λt′) (754)

=
∑
t′<t

log(pt′) (755)

And note that, the variance of the log can be computed by a simple taylor expandsion of a random
variable about its mean:

X ∼ ? (756)
〈X〉 = µ (757)

Var(X) = σ2 (758)

log(X) ≈ µ+
X − µ
µ

+O((X − µ)2) + . . . (759)

Var (log(X)) = 0 +
Var(X)

µ2
(760)

=
σ2

µ2
(761)

90

So we have:

log
(
Ŝ(t)

)
=

∑
t′<t

log (1− λt′) (762)

=
∑
t′<t

log(pt′) =
1

Ŝ(t)2
Var(Ŝ(t)) (763)

Using this transform on our formula above, we have

Var
(
Ŝ(t)

)
= Ŝ(t)2Var

(∑
t′<t

log(pt′)

)
(764)

Luckily, if we assume independence, the variance of the sum is the sum of the variances, so we can treat
each pt as an independent binomial draw, with variance pt(1 − pt)/nt, where nt is the “sample size” of
our survival curve at time t.

Working through some nasty algebra, and another use of the variance of the log identity we get:

Var
(
Ŝ(t)

)
= Ŝ(t)2

∑
t′<t

Var (log(pt′)) (765)

= Ŝ(t)2
∑
t′<t

1

p2
t′

Var (pt′) (766)

= Ŝ(t)2
∑
t′<t

pt′

nt′(1− pt′)
(767)

We see that variance of the estimator goes like the cumulative sum of one over the sample size at each
time t:

Var
(
Ŝ(t)

)
∼

∑
t′<t

1

nt′
(768)

Now, when dealing with very large data, say billions of survival events, it can be difficult to get these
death counts as a function of time, due to a few implementation details, and the resistance of cumulative
sums to parallelization. So, what people often do, is the estimate the survival curve at multiple snapshots,
M , and then take the average of the snapshot estimates:

ŜM(t) =
M∑
m=1

Ŝm(t)

M
(769)

=
M∑
m=1

∏
t′<t (1− λmt′)

M
(770)

This estimator will have the same mean as our “full history” estimator, but slightly different variance
properties. As we know, the variance of a mean goes like one over the sample size:

Var (SM(t)) =
1

M
Var (Sm(t)) (771)

91

But what’s the variance of each snapshot estimate? Simply our old formula, with the population count
nmt instead of nt. Or, in english, the number of people who were “alive” at time t in snapshot m, rather
than the total number of people who were alive at time t. Strictly, nmt < nt. If we assume our snapshots
are evenly populated with “alive” people at each time t, we will have nmtM ≈ nt.

And so, comparing the variance of our estimators, we see:

Var (S(t)) = Ŝ(t)2
∑
t′<t

pt′

nt′(1− pt′)
(772)

Var (SM(t)) =
1

M
ŜM(t)2

∑
t′<t

pmt′

nmt′(1− pmt′)
(773)

Taking the ratio of the variances, we get, since the means are equal (Ŝ(t)2 = ŜM(t)2):

Var (SM(t))

Var (S(t))
=

∑
t′<t

pmt′
nmt′ (1−pmt′)∑

t′<t
pt′

nt′ (1−pt′)
(774)

Assuming equal sample size across snapshots, we can make the replacement, nmt = nt/M :

Var (SM(t))

Var (S(t))
≈

∑
t′<t

pmt′
nt′ (1−pmt′)∑

t′<t
pt′

nt′ (1−pt′)
(775)

And, assuming the pmt ≈ pt∀t, we get the very simple ratio:

Var (SM(t))

Var (S(t))
≈ 1 (776)

How well does this mean we’re doing? Well, it means that the variances of both methods are compara-
ble. Which is surprising! If we want to probe deeper, and understand whether or not there is a difference
between the two sampling strategies, we would have to closely inspect the cumulative sum:

∑
t′<t

pmt′

nmt′(1− pmt′)
∼

∑
t′<t

pt′

nt′(1− pt′)
(777)

92

26 LARS: Least Angle Regression
Typically, when one performs a multivariate regression on y with features x, one uses the normal equation:

Data = (Xnj, Yn) (778)
ŷn = θjXnj + ε (779)
ε ∼ N(0, σ2

n) (780)
θk = (XnkXnj)

−1XnjYn (781)
= (Cov(xk,xj))

−1 Cov(xj, y) (782)

This is all well and good, for estimating regression coefficients in a multivariate model, but one often
wants to aggressively feature select, or search for only those inputs that are most relevant to prediction.
One approach to this is penalizing the likelihood with an L1 or L2 prior, which results in a slightly different
normal equation:

θk = (XnkXnj + ε)−1XnjYn (783)

Where ε exerts downward force on the regression coefficients, through a Gaussian prior. Beyond this,
one can also recursively regress on the residuals, which is how least angle regression works.

Let’s say we would like to first construct a model with a single input for prediction: a linear model
would of course choose the feature – and the coefficient – that have the highest correlation with the label:

f1(xn) ≈ yn = θ1x1 + ε (784)

θ1 =
ρ1

σ2
1

(785)

ρ1 = Cov(x1, y) (786)
σ2

1 = Cov(x1, x1) (787)

Next, we would like to add a new feature to our model, but instead of regressing on the label itself
with x1 and x2, we are going to find the coefficient that is most correlated with the residual r from our first
model:

rn = (yn − θ1x1) (788)
rn ≈ θ2x2 + ε (789)

θ2 =
ρ2

σ2
2

(790)

ρ2 = Cov(x2, rn) (791)
σ2

2 = Cov(x2, x2) (792)

27 Colinearity
27.1 Part 1
I’ve heard a lot comments – some captions, some cowardly – about ”co-linearity” recently, from both
colleagues at work and friends using statistics in their jobs. And, well, GUESS WHAT? Co-linearity is
not as scary as it used to be! Many people don’t realize that there are a variety of ways to avoid or control
”co-linearity” in data when performing basic regressions, and I want to take some time to outline them.

93

Let’s begin by saying we’ve got regression problem on our hands: one where we have N examples of
some feature vectors x, of dimension D, contained in an N ×D data matrix:

X =


← ~x1 →
← ~x2 →

...
← ~xN →

 (793)

and, N real-valued response variable examples, Y :

Y =


y1

y2
...
yN

 (794)

Our goal is to write a linear model of some sort:

ŷn ≈ β · xn + ε (795)

Where we assume the errors are drawn from some probability distribution. In standard regression
problems Normal, so we’ll keep it that way:

ε ∼ N (0, σ2) (796)

Now, as we’ve covered before in this blog, the likelihood of the data – or, the co-occurence of features
and labels we see in the world (X, Y) – given some model, specified by beta, is equal to:

P (X, Y |β) =
N∏
n=1

1√
2πσ2

exp
(
−(yn − β · xn)2/2σ2

)
(797)

Where, by taking a product above, we assume each data instance n = 1, . . . N is independent. Taking
the log of this likelihood we get:

L(X, Y |β) = −N
2

log(2πσ2)−
N∑
n=1

(yn − β · xn)2

2σ2
(798)

This is a convex function of β, meaning that if we set the derivative equal to zero, we are guaranteed
to find a global maximum / minimum (very good), and so our MLE or maximum likelihood estimate of
the model β becomes, if we write things now in matrix notation:

L(X, Y |β) = −N
2

log(2πσ2)− (βdXnd − Yn)22σ2 (799)

Taking the derivative with respect to βd (a gradient) we get:

∂L(X, Y |β)

∂βd
|β=β′ = (βlXnl − Yn)Xnd = 0 (800)

βlXnlXnd = XndYn (801)
βl = (XnlXnd)

−1XndYn (802)

94

This is called the Normal Equation, can actually be well understood that noting:

XnlXnd ≈ NCov(xl, xd) (803)
XnlYn ≈ NCov(xl, y) (804)

which, words, is the covariance betwen the lth dth components of the feature vector and the covariance
between the lth feature and the target, y.

There’s a very important thing to notice here, straight off the bat, which is that the Normal Equation
– which is the standard way of solving regression, or OLS (ordinary least squares) problems – accounts
for interactions between the features: we can see it in the ”discounting” factor of the inverted matrix,
above. Highly correlated features will dampen each other’s effect, which is very, very cool. Regression
coefficients βd represent the “net” effect of the d feature, not the “gross” effect, as one would get by doing
a single, univariate regression of xd on y. This is important to keep in mind, but we’re not out of the – or
even into the – co-linearity woods yet.

—————————————-
People get upset or concerned about colinearity when they want:

1. Interpretable Models

2. Stable Regression Coefficients β in the face of changing data.

3. A bone to pick with a model or feature set that they don’t trust or understand.

Now, most of the ”spookiness” of co-linearity comes from linear algebra, and the complete absence
of Bayesian Statistics in Traditional circles of past Statisticians, where putting priors on regression
coefficients is equivalent to regularizing, and therefore controlling and containing, co-linearity.

Take for example a data matrix where we haveN = 15 data points in our set, butD = 45 features. The
old-time statisticians might tell you that the problem is ill-specified or ill-defined, because if we create a
regression model with 45 degrees of freedom, there simply aren’t enough data points to ”figure out” what’s
going on. And that’s true, but it really comes from the fact that when inverting a matrix – as we’re doing
above – with linearly dependent columns, we could run into a lot of numerical trouble.

This has to be the situation in the case I just mentioned above, as it is impossible for the square matrix
XnlXnd – which is D ×D – to be properly invertible. And this is simply because the column space of X
is at most of dimension N = 15. I won’t get into the dirty details, but suffice it to say that when you tried
to regress in such a situation, solving using the old methods, you were hosed.

The way to wiggle out of it, was to sub-select the features, such that D < N , and move on with
the analysis. One could also use PCA to ”represent” the matrix XnlXnd in terms of its most prominent
eigenvectors, but in modern times this is a brute way to do things, and especially with genetic data, where
the feature space is far more dimensional than the number of examples we have (by a factor of 10, 100 or
even a 1000), we can do better than that.

27.2 Part 2
Last post was concerned with co-linearity in regression problems, and how one chooses to deal with it.
The Normal equation and was mentioned before:

βd = (XndXnl)
−1XmlYm (805)

and, we can also introduce the “hat” matrix:

95

Ŷn = Xndβd (806)
= Xnd (Xn′dXn′l)

−1XmlYm (807)
Hnm = Xnd (Xn′dXn′l)

−1Xml (808)
Ŷn = HnmYm (809)

which, as you can see, puts the “hat” on our initial response observations, ym. This smoothing matrix
depends on an inversion, and as mentioned before most solvers will fail if the data matrix has too many
features and not enough data points. But the way around this is through Bayesian methods. We’ll start by
noting that the likelihood from last post was the Likelihood of the data, given the model:

P (X, Y |β) (810)

But, what if we’d like to write – for some, more intuitively and accurately – the likelihood of the
model, given the data? This can be written as:

P (β|X, Y) =
P (X, Y |β)P (β)

P (X, Y)
(811)

The second term on the numerator is something called a prior, and encodes our a priori beliefs on the
values of β in our model. If we specify a Normal Prior, with some variance s, we get:

P (β) =
1√

2πs2
e−β

2/2s2 (812)

The term P (β|X, Y) is called the posterior, and represents our “new” beliefs on the model after ac-
counting for the data that we have seen. Now, taking the log of the Posterior instead of the log of the
likelihood – and ignoring the term in the denominator since it contains no dependence on β, we get:

L(β|X, Y) = −N
2

log(2πσ2)− (βdXnd − Yn)2

2σ2
− 1

2
log(2πs2)− βdβd

2s2
+O(X, Y) (813)

Taking the gradient with respect to β now, we get an extra term in our equations:

∂L(β|X, Y)

∂βd
=

(βlXnl − Yn)

σ2
Xnd +

βd
s2

(814)

XndYn
σ2

= βl

(
XnlXnd

σ2
+
δKld
s2

)
(815)

XndYn = βl

(
XnlXnd + δKld

σ2

s2

)
(816)

βl =
(
XnlXnd + (σ/s)2

)−1
XndYn (817)

We see that we’ve just got an extra term in the inverted matrix – namely the ratio of sample variance
to prior variance – which adds to the diagonal of the feature l, d covariance estimate. What this does,
practically speaking, is make the inverted matrix much more likely to be non-singular, and therefore
resilient to have more features that datapoints, D > N .

96

As s get’s smaller, what we essentially do is put isotropic, downward pressure on the β coefficients,
pushing them down towards zero. This L2 norm or regularization on our model has lots of nice properties,
and depending upon the strength of our prior, we can use it to protect against very “ill-defined problems”,
where D >> N .

The standard name for the method is called ridge regression, and people continue to be unaware of its
benefits, such as protecting against co-linearity, and getting a sense of what regression coefficients do over
varying strengths of regularization – called a regularization “path”.

27.3 Part 3
As you can imagine, with increasing strength of the prior s, mentioned above, comes reduction in the
magnitude of the regression coefficients β. Instead of using an L2 norm in the prior, one can also use an
L1 norm, and then the log Likelihood becomes:

−L(β|X, Y) =
(Xniβi − Yn)2

2σ2
+

(∑
i

|βi|

)
(818)

Which can be solved as a Quadratic programming problem as long as one puts an inequality constraint
on the sum of the absolute coefficients of β: T (β) =

∑
i |βi| < t. This type of normalization of the

regression coefficients is called the LASSO, and by the nature of its β penalization, chooses solutions that
are sparse in regressors – i.e. kills off coefficients and features that seem not to matter. With a decreasing
value of t comes, fewer and few features, as you can imagine, and just like our parameter s above, we have
explicit control over the “filtering” pressure of our regression coefficients β.

L2 and L1 regularization of regression coefficients lead to slightly different solutions. L2 tends to
spread coefficient magnitude across clusters of variables that are all correlated with the target, while L1
aggressively prunes coefficient magnitude to the “winners” of the feature set. Making a plot of βi(t), βi(s)
for both L1 and L2 regularization, reveals this.

The lasso can be very useful when trying to isolate “what matters” in a regression problem, and just
like ridge regression, helps control linear dependence and colinearity within the data matrix, but one can
also use simple clustering techniques to choose the “best” set of features. For example, take the normalized
correlation matrix:

X̃ni =
Xni − µi

σi
(819)

ρij = corr(xi, xj) =
1

N
X̃niX̃nj (820)

The upper diagonal portion of ρij represents a graph, where the nodes are the features i and the edges
are the matrix entries – each between 0 and 1. We can “cluster” our set of features very easily, by simply
thresholding ρij > ε and then picking out connected components from the matrix. The connected com-
ponents – depending upon how many of them there are, each represent “feature groups”, from which one
can choose the most highly correlated feature with the target:

{Cn} = conn(ρij > ε) (821)
xc = maxi∈c (corr(xi, y)) ∀c ∈ {Cn} (822)

Obviously, this filtered set of features – and their multiplicity – will be a function of ε. As ε → 1 we
will have all features come out, xc = xi, and as ε → 0 we will have the single, most highly-correlated
feature: xc = maxi corr(xi, y).

97

The whole point of doing this, of course, is to find a set of features xc that are statistically de-coupled
from one - another, and it really reduces to a supervised down-sampling of the initial data.

Becaus regularization paths are so popular, especially from a diagnostic point of view it’s worth men-
tioning that one of my favorite algorithms for sequentially adding in features to a regression problem is
LARS – or least Angle Regression. The basic idea come from boosting, but I’ll get to it in the next post.

27.4 Pricing Optimization
After reading through quite a bit of literature – or at least a weekend’s worth – on optimized pricing and
it seems as though the same ideas are being circulated, again and again and again. I know there are good
resources out there in terms of pricing in high-volume environments, such as online advertising, but for the
most part, in retail and macro ”bidding”, such as winning large contracts every few years or applying for
an RFP, the thought process has remained the same: what’s the probability of ”winning” – i.e. getting the
bid – at price point x, and what’s the price at which we optimize the expected return. This can basically
be described as:

P (y|~x) =
1

1 + e−β·~x
(823)

E (x) = xP (y|x) (824)

Where, I”ve already modeled the ”winning” probability as a logistic regression – standard practice
based on former papers. But, it’s interested to note that supply and demand curves have a very close
connection here, and most often this function p(y|x) needs to have some specific properties, such as:

1. Be monotically decreasing in x – for non status-associated or ”Giffen” goods.

2. Approach zero as x→∞.

3. Approach the total supply, call it D, as x→ 0.

A nice way to formulate this is of course with a right-sided, CDF. Integrating p(y|x), what some people
call a ”willingness” to pay function:

d(x) = D

∫ ∞
x

dx p(y|x) (825)

d(x) = Dp(y|X ≥ x) (826)

So the “demand” at price point x will now have some nice properties – such as being monotonically
decreasing. When someone associates an “elasticity” with a supply and demand curve, such as:

d(x) ≈ α + βx (827)

With β < 0, what you’re actually doing is imposing a constant “willingness” to pay function, which
is interesting because my “risk” of saying no to any deal – much like any consumer – is certainly not
constant over all price points.

Typical strategies for pricing a single customer i’ve read have :

• Fit a logistic function / regression to the right-sided CDF, p(y|X ≥ x).

• Fit a linear regression to the demand function, d(x)

and then, using these “risk” curves, pointed out an optimal price x∗.
I’ve read have fit some form of the normalized demand curve, such
Which

98

28 Regression and Matching

Part IV

Useful Mathematical Functions
29 The Gamma Function Recursion Relation
29.1 For Integers
The factorial has the following property:

(z + 1)! = (z + 1)z! (828)

Back in the 18th – maybe 17th – centuries, an interesting problem was posed: how do we represent the
factorial of extremely large numbers, and, how do we compute it quickly?

Hence the gamma function, Γ(z) which has the following definition and properties:

Γ(z) ≡
∫ ∞

0

e−ssz−1ds (829)

Integrating this function by parts, let us examine Γ(z + 1):

Γ(z + 1) =

∫ ∞
0

e−sszds (830)

= e−ssz|∞0 − z
∫ ∞
−∞

e−ssz−1ds (831)

= zΓ(z) (832)

Interesting . . . if we examine Γ(1), we find

Γ(1) =

∫ ∞
0

e−sds (833)

= −e−s|∞0 (834)
= 1, (835)

which means

Γ(n) = 1 · 2 · 3 . . . (n− 1) (836)
= (n− 1)! (837)

Interesting. The gamma function of integer values yields the factorial of that integer value minus one.

29.2 For Half-Integers
Now what if we examine the Gamma function when n is a half-integer? Does the factorial of a half integer
– or any non-integer for that matter – make sense? Let’s take a look. Redefining s as x2, we find

99

Γ(z) =

∫ ∞
0

e−ssz−1ds (838)

=

∫ ∞
0

e−x
2

x2z−22xdx (839)

= 2

∫ ∞
0

e−x
2

x2z−1dx (840)

Setting z = 1/2,

Γ(
1

2
) = 2

∫ ∞
0

e−x
2

dx (841)

=

∫ ∞
−∞

e−x
2

dx (842)

=
√
π (843)

Citing our result from before, the integral above was simply the normalization of a Gaussian with
variance σ2 = 1. Or, 〈x0〉.

29.2.1 Relation of the Gamma Function to the moments of a Normal Distribution

Because the Normal distribution is even, it is a simple intuitive fact that the odd moments are zero. After
all, an odd function times an even function is an odd function, and that, integrated over a symmetric
domain will yield zero. But let us look at the even moments of a Gaussian:

Γ(z) =

∫ ∞
0

e−ssz−1ds (844)

Γ(z) = 2

∫ ∞
0

e−x
2

x2z−1dx (845)

Γ(z + 1/2) = 2

∫ ∞
0

e−x
2

x2zdx (846)

Γ(z + 1/2) =

∫ ∞
−∞

e−x
2

x2zdx (847)

Letting x′ = x′√
2σ

, we find dx′√
2σ

= dx; and (1
2σ2)z(x′)2z = x2z:

Γ(z + 1/2) =

∫ ∞
−∞

e−(x′)2/2σ2

(
1

2σ2
)z(x′)2z dx

′
√

2σ
(848)

√
2σ(2σ2)zΓ(z + 1/2) =

∫ ∞
−∞

e−(x′)2/2σ2

(x′)2zdx′ (849)
√

2(2σ2)zΓ(z + 1/2)√
2π

=
1√

2πσ2

∫ ∞
−∞

e−(x′)2/2σ2

(x′)2zdx′ (850)

(2σ2)zΓ(z + 1/2)√
π

= 〈x2z〉 (851)

2nΓ(n+ 1/2)

Γ(1/2)
(m2)n = m2n (852)

Pretty cool right? This means that all the moments of a Gaussian distribution – and thereby the entire
taylor expansion in terms of its moments – can be created from the second moment. If one knows the
variance, one knows everything

100

29.3 The Beta Function

29.4 The N-dimensional Ball
One of the coolest applications of the Gamma and Beta functions lie in the recursion relations for cal-
culating solid angle and volume in arbitary dimensions. Let us begin by describing the volume of an
n-dimensional sphere

Vn =

∫
rn−1dr

∫
dΩn (853)

Note that I have split up the integral into it’s radial portion – which goes from zero to infinity – and the
solid angle portion – or, the surface area per unit radius (to the nth power minus one). This indexing with
respect to n allows us to write a recursion relation, starting with the base case n = 2:

V2 =

∫
rdr

∫
dΩ2 (854)∫

dΩ2 = 2π (855)

V2 =
r2

2
2π (856)

V2 = πr2 (857)

As expected. Now let us rewrite in polar coordinates, and create the n dimensional case in terms of the
n− 1 dimensional case:

Vn =

∫
rn−1dr

∫
sinn−2(θ)dθ

∫
dΩn−1 (858)

By taking successive steps down, we can eventually arrive at the case n = 2.

∫
dΩn =

∫
sinn−2(θ(n−1))dθ(n−1)

∫
sinn−3(θ(n−2))dθ(n−2)

∫
dΩn−2 (859)

=

∫
sinn−2(θ(n−1))dθ(n−1)

∫
sinn−3(θ(n−2))dθ(n−2) · · ·

∫
dΩ2 (860)

Notice how I have indexed each theta coordinate with a subscript n − 1, n − 2, etc. We will call
the radius the nth coordinate. If we assume all of these integrands are separable – which they are if our
function is isotropic, or spherically symmetric in n-dimensions – then we can write each of their limits
explicitly:

∫
dΩn =

∫ π

0

sinn−2(θ(n−1))dθ(n−1)

∫ π

0

sinn−3(θ(n−2))dθ(n−2) · · ·
∫ 2π

0

dφ (861)

By symmetry, we can cut these integration limits from zero to π in half, and equate each integrand to
a beta function:

101

∫
dΩn =

∫ π/2

0

2 sinn−2(θ(n−1))dθ(n−1)

∫ π/2

0

2 sinn−3(θ(n−2))dθ(n−2) · · ·∫ π/2

0

2 sin(θ(2))dθ(2)(2π) (862)∫
dΩn = B(

1

2
,
n− 1

2
)B(

1

2
,
n− 1

2
) · · ·B(

1

2
, 1)2π (863)∫

dΩn = Πn
i=3B(

i

2
,
i− 1

2
)2π (864)

The right hand side of this equation can be simplified into telescoping gamma functions, since

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
, (865)

as we saw from last section. Putting this into our expression for the n-dimensional solid angle,

∫
dΩn = Πn

i=3B(
i

2
,
i− 1

2
)2π (866)

= (
Γ(1

2
)Γ(n−1

2
)

Γ(n
2
))

(
Γ(1

2
)Γ(n−2

2
)

Γ(n−1
2

)
) · · · (

Γ(1
2
)Γ(4−1

2
)

Γ(4
2
)

)
Γ(1

2
)Γ(3−1

2
)

Γ(3
2
)

2π (867)

=
Γ(1

2
)n−2

Γ(n
2
)

2π (868)

=
2π
√
π
n−2

Γ(n
2
)

(869)∫
dΩn =

2πn/2

Γ(n
2
)

(870)

Whew!. Now we can related this expression to the volume of an n-dimensional ball:

Vn =

∫
rn−1dr

∫
dΩn (871)

=

∫
rn−1dr

2πn/2

Γ(n
2
)

(872)

=
rn

n

2πn/2

Γ(n
2
)

(873)

=
2πn/2

Γ(n
2

+ 1)
rn (874)

There might be a pesky factor of two running around in there, but for the time being, we’ll keep it
there.

29.5 Dimensional Regularization
For an isotropic integrand in Rn, we can reduce its evaluation only to radial coordinates:

102

∫
f(x)dnx =

∫
f(r)rn−1dr

∫
dΩn

=

∫
f(r)rn−1 2πn/2

Γ(n
2
)
dr

Part V

Stochastic Processes
30 Time Series Data
30.1 Linear Wold Representation and Green’s Functions
Recently, I’ve been reading a great deal about time series data, and the various ways to represent it, model
it, even forecast it. Seems a fundamental concept in time series data is the Wold decomposition theorem,
which states that any time series {yt} can be represented by a linear process, or infinite order moving
average representation:

yt = µ+
∞∑
k=0

ψkεt−k (875)

ψ0 = 1 (876)
∞∑
k=0

|ψk|2 <∞ (877)

εt ∼ WN(0, σ2) (878)

What this basically says is that any process can be viewed as an integrated “reaction” to some exciting
noise/random force εt. That underlying noise ε may or may not be constant over time, or have the same
statistical properties over time, but we’ll restrict ourselves to the simplest case where the noise is Gaussian.

This framing of a discrete time-series looks unbelievably similar to a Green’s function, where the
impulse response of some observable y(t) is given by the solution to a linear differential equation. Let’s
take the langevin equation as an example:

m
∂v(t)

∂t
= −γv(t) + ε(t) (879)

This models the velocity of a particle, v(t) in a viscous medium. We can frame this equation of motion
as a linear operator:

(
1 +

γ

m

∂

∂t

)
v(t) =

1

m
ε(t) (880)

L̂v(t) =
1

m
ε(t) (881)

If we take the Laplace Transform or Fourier transform of this equation, we can derive the inverse of
our linear operator, L−1(t), which is the Green’s function. Just for practice, I’ll go through the motions all
over again:

103

(
1 +

γ

m
∂t

)
G(t) = δD(t) (882)

Where δD is the dirac delta function. Taking the fourier transform we get:

(1 + iω
γ

m
)G(ω) = 1 (883)

We now have an algebraic equation rather than a differential one, and inverting becomes easy. Trouble
is, we have to back transform:

G(ω) =
1

(1 + iωγ/m)
(884)

G(t) =

∫
dω

2π

eiωt

1 + iωγ/m
(885)

This integral can be computed via the residue theorem, but has a couple of tricks in it, due to the sign
of t. If we restrict ourselves to positive t, we get:

G(t) = e−(γ/m)t (886)

So now, convolving our Green’s function with the force function, ε(t), we get:

v(t) =

∫ t

0

dt′e−(t−t′)/τε(t′) (887)

31 The Watson-Nadaraya Estimator

32 Differential Regularizers
Often, when we are solving a regression problem, we are given the following functional:

J [f] = l [f, y] + Ω [f] (888)

Where l is some loss functional and Ω is some regularizer. Given some finite dataset, this might look
like, in the case of squared loss:

X = {xn}Nn=1 (889)

J =
N∑
n=1

(f(xn)− yn)2 + Ω(f) (890)

For a linear basis expansion model, we have the following:

f(x) = w · φ(x) (891)

J(w) =
N∑
n=1

(w · φ(xn)− yn)2 + λ|w|2 (892)

104

where λ|w|2 plays the role of a prior over functions. The cost function in this example proportional to
the negative log prior, want we have essentially:

− logP (w|X,y, φ) ∼ J(w) (893)

Minimizing the cost with respect to w is same thing as finding the mode of the posterior, or Maximum
a Posteriori. (MAP). We’ve already talked about how, for such a regularized regression problem, we can
right the solution as a linear combination of kernels, centered at the data:

f(x) =
N∑
n=1

αnK(x,xn) (894)

a manifestation of the representer theorem. But one important question to ask, given some regulariza-
tion functional, is, what’s the “best” Kernel? Let’s take for example the regularizer:

J =

∫
dx (f(x)− y)2 +

∫
dx|∂

2f(x)

∂x2
|2 (895)

This Ω functional penalizes curvature in our fitting function f(x), and we can note that what such a
regularizer really is, is a prior over functions, since:

P (f(x∗)|f(X),y) =
P (X, y|f)P (f)

P (X,y)
(896)

=
exp

[
−
∫
dx (f(x)− y)2 −

∫
dx|∂

2f(x)
∂x2 |2

]
P (f(X),y)

(897)

(898)

We see that the prior on function is:

P [f] ∼ exp

(
−
∫
|f ′′(x)|2dx

)
(899)

and, to be more general, we could have written the prior on our functions as a superposition of differ-
ential operators:

P [f] ∼ exp

(
−
∫ ∞∑

m=1

am
∂m

∂xm
|f(x)|2dx

)
(900)

If we integrate by parts, we note that this prior functional can be put into the form:

P [f] ∼ exp

(
−
∫
dxdx′f(x)K(x, x′)−1f(x′)

)
(901)

Which of course gives us the familiar prior assumptions:

105

〈f(x)〉 = 0 (902)
Var (f(x)) = K(x, x′) (903)

But, for a given differential regularizer, how do we find the associated Kernel? The answer is simple,
it’s just the Green’s function of the operator:

L̂ =
∑
m

am
∂m

∂xm
(904)

L̂K =
∑
m

am
∂m

∂xm
K(x, x′) = δ(x− x′) (905)

An easy way to get the green’s function – or in this case Kernel – is to fourier transform. We can
re-write our prior in s space:

f(s) =

∫
dxe−isxf(x) (906)

P [f] ∼ exp

(
−
∫
ds

∞∑
m=1

am|s · s|m|f(s)|2dx

)
(907)

We see now the fourier transform of our inverse kernel is:

1

K(s, s′)
=

∑
m

am(−1)m|s · s|mδD(s + s′) (908)

We see that the kernel is diagonal and in s space and semi-positive definite. Which means that we are
translationally invariant in x space. We have:

K(x, x′) =

∫
dsds′eisx+is′x′ 1∑

m am(−1)m|s · s′|m
δD(s + s′) (909)

K(x− x′) =

∫
dseis(x−x

′) 1∑
m am|s · s|m

(910)

We see that, indeed, our Kernel will be translationally invariant, and when we put a prior over functions,
what is essentially a LAGRANGIAN in physics:

Ω[f] ∼ L =

∫
dx
∑
m

am
∂m

∂xm
f(x) (911)

We find that the kernel is just the correlation function – or, the PROPAGATOR – for the resulting
stochastic process. One example is the massive free particle in higher dimensions – or the free process in
higher dimensional feature space – for which we get the Yukawa potential:

Ω[f] ∼ L =

∫
dx
m2

2
f(x)2 +

1

2
∇2f(x) (912)

K(x− x′) ∼ 1

|x− x′|
e−|x−x

′|m (913)

106

So, the Kernel we use when interpolating some field, or, specifying the prior of our Gaussian process,
can be viewed as the Green’s function to our penalizing ”regularizer”. If we want smooth functions up to
order m = M , we know precisely how to formulate the associated K(x − x′). Note that all differential
regularizers, such as discussed here will lead to stationary kernels and thus stationary processes.

107

Part VI

Cosmology
33 Assumptions
Let us imagine a universe with a density field ρ(~x) and mean density ρ. Let us define the mass density
perturbations from the mean as a

f(~x) =
ρ(~x)− ρ

ρ
. (914)

This f is most often written as δ, but I do not want to confuse our density perturbations with the dirac
delta function. Let us assume that the universe “chooses” to inhabit each point in space with a certain
amount of overdensity, according to a Gaussian probability density function. This would imply – if such a
Gaussian probability density function was centered – that the mean density is zero. Further, let us assume
that the “choice” to inhabit one point is entirely statistically independent from another point’s choice. Or
at t = 0 – and by that we mean the real time equals zero – if such a thing exists – every single point in
space performs an experiment, governed by a Gaussian probability density function, whose observable is
the overdensity f .

To study the statistical properties and likelihoods of our three-dimensional density field, let us imagine

that our universe has been “pixellated” into unit cubes of side length s ∼
√

~G
c3

, of one Planck length. This
is, in essence, the most absurd and refined N-Body simulation possible. Our density field ρ(~x) is now a
single dimensional vector of N components. Or, building on our discussion from before, an ensemble of
N simultaneous experiments at t = 0. This is a spatial ensemble of experiments, since we are comparing
point to point within our universe.

33.1 Absurd Multinomial
One easy way to describe this pixellated universe would be with multivariate Gaussian – where, the num-
ber of variables is the number of pixels in the Universe, a ridiculous number, and we thus measure the
plausibility of a random vector, or set of outcomes. Let those set of outcomes be labeled f(xi) → xi,
denoting the overdensity at a single point in space:

P (x) =
e−x·C

−1·x

(2π)N/2
√
|C|

(915)

Where, C is the covariance matrix; its components are given by the cross correlation estimators:

Cij = 〈xixj〉 (916)

=
∂2φ(k)

∂ki∂kj
|k=~0 (917)

Where, φ(k) is the characteristic function – fourier transform – of our multinomial P (x), and the
angled brackets denote an ensemble average over parallel universes (more on that soon).

If we assume Gaussian initial conditions, then this probability density function above perfectly de-
scribes the likelihood of various over densities. And if we assume statistically independent values of xi
then the matrix C will be diagonal.

This will not always be true however, as universe evolves.

108

33.2 Ergodicity
Now, if we would like to measure the first moment, or the expectation value of density, we would have to
examine a single point in space – let’s call it fi. But if we sit there, during the evolution of the universe
and watch fi, we’ll find that its “choice” has been made; the single pixel has “chosen” to be overdense,
and so now the characteristics of fi are determined by Gravity. Perhaps we had better think of the prior
probability density function of fi before it made its choice.

But how do we get information about such a PDF? How could we measure the width or expectation
value of a Gaussian that existed once but has now collapsed into a delta function at t = 0? One could
imagine many parallel universes, where a scientist is present at the beginning of each one, ready to measure
the same point’s – fi’s – “choice” to be a certain density value. We would expect this ensemble of density
measurements across parallel universes to have the properties of a Gaussian. Unfortunately, we only get
one universe.

But we have another ensemble to rely upon, and that is the prenominal spatial ensemble of density
values at t = 0. Is it possible that we can derive the same information from the spatial ensemble as we can
from the parallel universe ensemble (both at t = 0)?

The answer lies in ergodicity. If one assumes that the spatial average, over all the separate points in
our universe will elicit the same properties as the parallel universe ensemble average, then we say the field
is ergodic. Going with our assumptions from above, we expect every single point’s density “choice” in
space to be statistically independent: for such a set up, the spatial characteristics will be Gaussian. So in
essence, our spatial measurements could inform us as to the initial probability distribution, governing each
point in space’s “choice”.

34 The Two Point Correlation Function
The correlation between two functions of a single variable is defined as

(f ? g)(y) =

∫
f(x− y)g(x)dx. (918)

In many ways, this represents the overlap of signals, probability densities, or simple function character-
istics, depending upon your interpretation. We are interested in finding the statistical correlation between
two points in our universe being overdense. [Or, for complete generalization, we are interested in the
correlation of two random functions of a parametrized variable f(~x), which is a tuple.]

Let us use the density perturbation δ(~x) = δ(~x−δ
δ

as our random function of interest. Let’s examine the
spatial – not the ensemble – average of two separate points, decomposed into Fourier components:

〈δ(~x)δ(~y)〉 = 〈
∫ ∫

δ(~k)δ?(~k′)ei
~k·~xe−i

~k′·~yd3kd3k′〉 (919)

=

∫ ∫
〈δ(~k)δ?(~k′)〉ei~k·~xe−i~k′·~yd3kd3k′ (920)

(921)

Where in the second line, I have taken the expectation value brackets inside the integral because the
exponential factors are not stochastic.

If, under translations, this ensemble average is invariant, we can say that the the correlation is only a
function of their relative separation:

109

〈δ(~x)δ(~y)〉 = 〈δ(~x+ ~a)δ(~y + ~a)〉, ∀~a (922)

⇒ 〈δ(~x)δ(~y)〉 =

∫ ∫
δ(~x)δ(~x− ~y)d3xd3y (923)

ξ(~y) =

∫
δ(~x)δ(~x− ~y)d3x (924)

〈δ(~x)δ(~y)〉 = 〈ξ(~x− ~y)〉 (925)
〈(δ ? δ)(~r)〉 = 〈ξ(~r)〉 (926)

Where I am now using the more common representation of the two point correlation function, ξ(~r),
where ~r = ~x− ~y. We can now define the autocorrelation between density perturbations:

(δ ? δ)(~r) = ξ(~r) (927)

Let us examine this property of translational invariance – or homogeneity – in frequency space:

〈δ(~x)δ(~y)〉 = 〈δ(~x+ ~a)δ(~y + ~a)〉, ∀~a (928)
〈ξ(~y)〉 = (δ ? δ)(~y) (929)

〈ξ(~y)〉 =

∫ ∫
〈δ(~k)δ?(~k′)〉ei~k·~xe−i~k′·~yei~a·~k−~k′d3kd3k′, ∀~a (930)

〈ξ(~y)〉 = 〈δ(~k)δ(~k′)〉δD(~k − ~k′) (931)

Where δD is the dirac delta function – as compared to the density perturbation field δ. This final equa-
tion shows that separate Fourier modes are uncorrelated in a homogeneous universe. We can further refine
this equation by stating the two point correlation function is invariant under rotations, thereby asserting an
isotropic density field. We find that the two point correlation function in both frequency and x space is a
function of a single, scalar variable. Let us rewrite our equations from before:

ξ(|~x− ~y|) = (δ ? δ)(|~x− ~y|) (932)

=

∫
δ(~k)δ∗(~k)ei

~k·(~x−~y)d3k (933)

=

∫
|δ(~k)|2ei~k·(|~x−~y|)d3k (934)

=

∫
|δ(~k)|2ei~k·(~x−~y)k2 sin θdθdkdφ (935)

If we set ~x − ~y along the kz axis, we can simplify this integral, writing the dot product ~k · (~x − ~y) =
kr cos θ, we find

ξ(r) =

∫
|δ(~k)|2eikr cos θk2 sin θdθdkdφ (936)

= 2π

∫
|δ(~k)|2eikr cos θk2d(cos θ)dk (937)

= 2π

∫ ∞
0

|δ(~k)|2(
sin(kr)

kr
)k2dk (938)

ξ(r) = 2π

∫ ∞
0

P (k)(
sin(kr)

kr
)k2dk (939)

110

We refer to P (k) or |δ(k)|2 as the spectral density – or the Power spectrum – whose integral over all
of k space is equal to the two point correlation function ξ’s integral over all of x-space by the correlation
theorem. This spectral decomposition is quite common in Gaussian Random Field theory, and is simply a
special case for three-dimensional, isotropic and homogeneous fields.

Notice that ξ(0) is equal to the variance of the spatial density distribution – assuming zero mean.
(Missing factor of two here!) Thus we find:

lim
r→0

ξ(r) = 2π

∫ ∞
0

P (k)k2dk (940)

σ2 =

∫ ∞
0

2πP (k)k2dk (941)

=

∫ ∞
0

(2πP (k)k3)d ln k (942)

σ2 =

∫ ∞
0

Φ(k)d ln k (943)

Where is Φ(k) = 2πk3P (k) is the dimensionless quantity, representing the total amplitude . . . (fill in
later)

35 Power Spectrum Estimators
An important thing to note, the square of a Gaussian random variable follows a Rayleigh distribution.
Peacock and Nicholson (1991) write the fourier coefficients of the overdensity field as:

ak =
∑
i

ni
N
eik·xi (944)

This is a sum of random variables, and so in the limitN →∞, ak is drawn from a Gaussian. Meaning,
if we have no correlation between different cell (i 6= j) occupation numbers:

aka
′
k =

∑
i,j

ninj
N2

eik·xi+ik
′·xj (945)

〈aka′k〉 =
∑
i,j

δij
N2

eik·xi+ik
′·xj (946)

〈aka′k〉 =
∑
i

1

N2
ei(k+k′)·xi (947)

〈aka′k〉 =
1

N
δk,−k′ (948)

〈|ak|2〉 =
1

N
(949)

So, we have the square of a random variable, who is drawn from some Gaussian distribution. Thus
|ak|2 will be drawn, in the absence of clustering/gravity, from a Rayleigh distribution:

P (〈|ak|2〉 > X) = e−NX (950)

This is the ‘Poisson noise’ that will undermine – or as Peacock and Nicholson say, ’overlay’ – the
clustering signal that we are trying to measure. In the case of non-zero correlation we have to split things
into two separate sums:

111

〈aka′k〉 =
1

N
δk,−k′ +

1

N2

∑
i 6=j

Cije
ik·xi+ik′·xj (951)

Somehow, we need to incorporate translational invariance into the second term:

〈|ak|2〉 =
1

N
+

1

N2

∑
i 6=j

Cije
ik·(xi−xj) (952)

=
1

N
+
N − 1

N
〈|δcluster

k |2〉 (953)

Where the last line is a little spurious, but I”m just following Peacock & Nicholson (1991) to the T. So
the power spectrum estimator must subtract off this shot noise:

P (k) ≈ 〈|ak|2〉 −
1

N
(954)

Note that the amount of power in a single “bin” k – or spherical shell in k-space – is equal to the
integral:

V

(2π)3

∫
k

|δ(q)|2d3q (955)

V

(2π)3

∫
k

P (q)d3q (956)

As the survey size V increases, we expect the amount of power in this bin to remain the same – why? –
and so find that the power spectrum scales with inverse volume. (There are probably better ways to argue
this, just by dimensional analysis.) Thus, our signal to noise ratio, for shot noise goes like N/V = n.
If we are to create estimators on the overdensity field, given our discrete data sample, we may use – and
perhaps, should use – reciprocal variance weighting, which means:

δ̂(x) =
δ(x)nb(x)

〈nb〉
= δ(x)W (x) (957)

Where I’ve written background density as nb(x) = 〈n〉W (x). For any expectation values with respect
to δ(x), we should use δ(x)W (x). The fourier transform becomes – which is now a weighted estimator
of the fourier coefficient:

δ̂(k) =
1

V

∫
d3xW (x)δ(x)eik·x (958)

= (W ∗ δ)(k) (959)

So in Fourier space – as expected – this multiplication becomes a convolution. This estimator on the
Fourier coefficient, given some discrete sample over varying background density – non-uniform W (x),
non dirac delta W (k) – might be biased, in the sense that:

|δ̂(0)|2 =
1

V 2

(∫
d3xW (x)δ(x)

)2

6= 0 (960)

112

So the Power spectrum at k = 0 – the DC component – is non-zero. This may be undesirable, and can
be corrected by just subtracting off a constant:

δ̂(x) = W (x)

(
δ(x)−

∫
d3xW (x)δ(x)

)
(961)

36 Interpolation of the Bispectrum and decomposition into Multi-
poles

37 Eulerian Fluid Dynamics
Ok, so let’s begin our massive review of Fluid dynamics in the Eulerian regime. We have the three
equations:

a (962)

37.1 Equations of Motion

37.2 Comoving Equations of Motion
We begin with the co-moving equations of motion for the overdensity field, δ(x).

δ̇ +
1

a
~∇ · [(1 + δ)v] = 0 (963)

v̇ +
1

a

(
v · ~∇

)
v +

ȧ

a
v =

−~∇p
ρa
− 1

a
~∇φ (964)

∆φ = 4πGρ̄a2δ (965)

Linearizing these equations, we can throw out all terms that are of higher order in v or δ. Let us call
the divergence of the velocity field θ.

δ̇ +
θ

a
= 0 (966)

v̇ +
ȧ

a
v =

−~∇p
ρa
− 1

a
~∇φ (967)

∆φ = 4πGρ̄a2δ (968)

If we take the divergence of the second equation and assume zero pressure, we can write:

δ̈ + 2Hδ̇ = 4πGρ̄δ (969)

This is the linear overdensity equation, which can be solved given a specific a(t), a(z), H(z).

113

37.2.1 Worked examples

37.2.2 Hubble as Decaying Mode

Taking a look at the Friedmann equations:

(
ȧ

a

)2

= H2 =
8πG

3
ρ+

K

a2
+ Λ/3 (970)

ρc =
3H2

0

8πG
(971)

H2 = H2
0

(
Ωm

a3
+

ΩK

a2
+ ΩΛ

)
(972)

Differentiating with respect to time, we find

2HḢ = H2
0

(
−3

Ωm

a3
+−2

ΩK

a2
+ ΩΛ

)
H (973)

Ḣ =
H2

0

2

(
−3

Ωm

a3
+−2

ΩK

a2
+ ΩΛ

)
(974)

Ḧ =
H2

0

2

(
9

Ωm

a3
+ 4

ΩK

a2
+ ΩΛ

)
H (975)

(976)

Now examining Ḧ + 2HḢ we find

Ḧ + 2HḢ = H2
0H

(
3

2
Ωma

−3

)
(977)

This right hand side can viewed by examining the following

H2
0 =

8πG

3
ρc (978)

1

ρc
=

8πG

3H2
0

(979)

3

2

ρ

ρc
=

4πG

H2
0

ρ (980)

3

2
Ωm =

4πG

H2
0

ρ (981)

3

2
ΩmH

2
0 = 4πGρ (982)

(983)

And so we find that the Hubble constant satisfies the same differential equation as our overdensity
field:

Ḧ + 2HḢ = 4πGρH (984)
δ̈ + 2Hδ̇ = 4πGρ̄δ (985)

We have studied the specific case of a universe dominated by Cold Dark Matter and Dark Energy. But
what is interesting to note is that in such a case, the Hubble constant always corresponds to the decaying
mode, D−(z).

114

37.2.3 Jean’s Length

Now let there be a non-zero pressure in the our overdensity model.

38 Lagrangian Fluid Dynamics
In order to formulate fluid mechanics from a Lagrangian, or phase space perspective, we begin with the
ansatz, or maybe the one-to-one mapping

x = q + ψ (986)

Now, the hope is that this mapping is always invertible, i.e.

ρd3x = ρ0d
3q (987)

ρ||Jij||d3q = ρ0d
3q (988)

||Jij||−1 = 1 + δ(x, t) (989)

det

(
∂ψi
∂qj

)−1

= 1 + δ(x, t) (990)

Now this determinant might be singular, and in such a case we expect an infinite density at some x.
This is called stream crossing. It can be noted, in a potential flow, where, we can write

x = q + tv (991)

By noting that now we have:

1

det
(
δij + t ∂vi

∂xj

) = 1 + δ(x, t) (992)

We know that deformation matrix Dij = ∂vi
∂xj

to be symmetric, since we can write vi ∼ ∂iφ, for some
potential, and therefore it is diagonalizable. In such a case we have real eigenvalues and eigenvectors,

1

(1 + tλ1) (1 + tλ2) (1 + tλ3)
= 1 + δ(x, t) (993)

Once one of these factors on the bottom hit zero we will have a huge amount of density. The eigenvalues
λi are ordered above λ1 > λ2 > λ3 and are very likely to be simultaneously of the same value. When one
eigenvalue signifcantly leads the others, we have what’s called pancake formation. When one significantly
lags, we have string formation. This topological speech has been ramped up for many years by many
people, in particular Prof. Shandarin. It is important to note from a topological point of view, those
eigenvectors correspond to 3 principle radii of curvature in an equal-time slice in spacetime. 3

3Note to self, I should look more into this

115

38.1 Grintein and Wise
Some of the cool stuff about the Zeldovich approximation can be seen if we write our lagrangian displace-
ment vector as essentially a velocity with some growing mode placed next to it:

x = q + b(t)ψ(q) (994)

Then we have, taking the derivative with respect to time and keeping q – which end up being our
co-moving coordinates fixed:

∂tx|q = vp = ḃψ(q) (995)

And so, if we want to write a phase distribution in the comoving coordinates, we can write:

f(q,vp, t) =
〈ρ〉
m
δ3
(
vp − ḃψ(q)

)
(996)

39 Relation to The Gaussian Ensemble
This variance, if we assume ergodicity of the spatial density distribution and Gaussian random phase initial
conditions, fully specifies the original normal distribution that each density value was picked from, since:

σ2 = 2π

∫ ∞
0

P (k)k2dk = ξ(0) (997)

2nΓ(n+ 1/2)

Γ(1/2)
(σ2)n = m2n. (998)

This means that under these conditions, if one has the power spectrum, one can reconstruct the entire
initial density distribution.

Part VII

Mathematical Cookbook
40 Sturm Liouville Problems
The following three problems are equivalent:

1. The sturm-liouville problem in differential equation form

− d

dx
(p(x)y′) + q(x)y = λw(x)y (999)

Where prime denotes differentiation with respect to x and w(x), p(x) do not vanish on the interval
of interest.

116

2. Extremizing the following functional F [y]

F [y] =

∫ b

a

(
p(x)(y′)2 + q(x)y2

)
dx (1000)

subject to the constraint

G[y] =

∫ b

a

wy2dx = 1 (1001)

The eigenvalues above are equal to the values of F [y].

3. Finding the functions for which

Λ[y] =
F [y]

G[y]
(1002)

is stationary. The eigenvalues of our first problem are then given by the values of Λ[y].

Our third option is called the Rayleigh quotient, and relies upon the boundary conditions of our func-
tion of interest, y, being fixed at the endpoints a, b.

40.1 Variational to Dif EQ
To show that these problems are equivalent, consider

δ(F − λG) =

∫ (
p(x)(y′)2 + q(x)y2 − λwy2

)
dx (1003)

Our effective Lagrangian is

L = p
dy

dx

2

+ y2(q − λw) (1004)

yielding an equation of motion

d

dx

(
2p
dy

dx

)
= 2y(q − λw) (1005)

which simplifies – after cancelling the 2’s – to our Sturm-Liouville Problem. Notice that the lagrange
multiplier is our eigenvalue.

117

40.2 Dif EQ to Variational Method
Multiplying the Sturm-Liouville equation and integrating both sides, we find

∫
−y d

dx
(py′) + qy2dx = λ

∫
wy2dx (1006)

(ypy′) |ba +

∫ (
p(y′)2 + qy2

)
dx = λG[y] (1007)

F [y] = G[y]λ (1008)

So, without the normalization condition G[y] = 1, we find that the Λ[y] = λ. oherwise, our functional
F [y] yields the eigenvalues.

40.3 Sturm-Liouville Appropriate Boundary Conditions
If we represent the SR differential equation as an operator on y, we could possible write our extension
above as

L[y] = λwy (1009)∫
yL[y]dx =

∫
λwy2dx (1010)∫

yL[y]dx = λG[y] (1011)∫
yL[y]dx

G[y]
= λ (1012)

Now if we have two functions p, q that are real, and we have new solution φ, that is possibly complex,
we can write L[φ]? = L[φ?]:

L[φ] = − d

dx
(pφ′) + qφ = λw(x)φ (1013)

Let us examine the following:

∫
fL[φ]dx = −fpφ′|ba +

∫
(pφ′f ′ + qfφ) dx = λ

∫
w(x)fφdx (1014)

If f is another complex valued function, we can compare the following two integrals, to construct
another Green’s theorem (I feel like everything is called Green’s theorem):

∫
u?L[v]dx−

∫
L[φ?]vdx = − (u?pv′ − vp(u?)′) |ba (1015)

If the right hand side of this equation is zero, or if we require

p(x)

(
u?
dv

dx
− vdu

?

dx

)
|ba = 0 (1016)

then we can write

118

∫
u?L[v]dx =

∫
L[φ?]vdx (1017)∫

φ?1L[φ2]dx =

∫
L[φ?1]φ2dx (1018)

λ2

∫
w(x)φ?1φ2dx = λ?1

∫
w(x)φ?2φ1dx (1019)

Which is true if and only if the two functions φ1, φ2 are orthogonal to each other with respect to the
norm – or weight function – w(x). Or if the eigenvalues satisfy λ2 = λ?1.

But wait! If we set φ1 = φ2, then we find that all eigenvalues must be real. And so two separate
functions that satisfy our SR equation, given different eigenvalues, must be orthogonal.

40.3.1 Examples

Here are some examples and exercises that may be useful. The following differential equations can be
written in SR form:

1. φ′′ − 2xφ′ = −λφ (Hermite’s Equation)

2. (1− x2)φ′′ − xφ′ = −λφ for −1 < x < 1 (Chebyshev’s Equation)

3. xφ′′(1− x)φ′ = −λφ for 0 < x (Laguerre’s Equation)

4. φ′′ = −λφ for 0 < x < L (SHO)

5. x2φ′′ + xφ′ + (x2 − λ2)φ = 0 (Bessel’s Equation) Which can be reduced to, if one divides by x

[xφ′]
′
+ xφ =

λ2

x
φ (1020)

Interestingly, the weight function for Bessel functions is 1/x.

6. (1− x2)φ′′ − 2xφ′ = −λ(λ + 1)φ (Legendre’s equation). Which leads to q(x) = 0, p(x) = 1− x2

and w(x) = 1.

41 Green’s Functions and Propagators
Say

119

